scholarly journals Association between differential gene expression and body mass index among endometrial cancers from The Cancer Genome Atlas Project

2016 ◽  
Vol 142 (2) ◽  
pp. 317-322 ◽  
Author(s):  
Dario R. Roque ◽  
Liza Makowski ◽  
Ting-Huei Chen ◽  
Naim Rashid ◽  
D. Neil Hayes ◽  
...  
2018 ◽  
Author(s):  
Inge Seim ◽  
Penny L. Jeffery ◽  
Lisa K. Chopin

AbstractIn the last decade the Cancer Genome Atlas (TCGA) program has revealed significant insights into molecular events of dozens of cancers. These data sets are continuously updated, providing an unprecedented resource to the research community. There is now an emerging link between obesity and the development and progression of cancer. In this study we wished to identify genes related to body mass index (BMI) in TCGA datasets. Supporting epidemiological data, our gene expression profiling analyses suggest that oesophageal adenocarcinoma (EAC) can be considered a true obesity-associated cancer subtype, presenting avenues for prevention and treatment.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Eirwen M. Miller ◽  
Nicole E. Patterson ◽  
Gregory M. Gressel ◽  
Rouzan G. Karabakhtsian ◽  
Michal Bejerano-Sagie ◽  
...  

Abstract Background The Cancer Genome Atlas identified four molecular subgroups of endometrial cancer with survival differences based on whole genome, transcriptomic, and proteomic characterization. Clinically accessible algorithms that reproduce this data are needed. Our aim was to determine if targeted sequencing alone allowed for molecular classification of endometrial cancer. Methods Using a custom-designed 156 gene panel, we analyzed 47 endometrial cancers and matching non-tumor tissue. Variants were annotated for pathogenicity and medical records were reviewed for the clinicopathologic variables. Using molecular characteristics, tumors were classified into four subgroups. Group 1 included patients with > 570 unfiltered somatic variants, > 9 cytosine to adenine nucleotide substitutions per sample, and < 1 cytosine to guanine nucleotide substitution per sample. Group 2 included patients with any somatic mutation in MSH2, MSH6, MLH1, PMS2. Group 3 included patients with TP53 mutations without mutation in mismatch repair genes. Remaining patients were classified as group 4. Analyses were performed using SAS 9.4 (SAS Institute Inc., Cary, North Carolina, USA). Results Endometrioid endometrial cancers had more candidate variants of potential pathogenic interest (median 6 IQR 4.13 vs. 2 IQR 2.3; p < 0.01) than uterine serous cancers. PTEN (82% vs. 15%, p < 0.01) and PIK3CA (74% vs. 23%, p < 0.01) mutations were more frequent in endometrioid than serous carcinomas. TP53 (18% vs. 77%, p < 0.01) mutations were more frequent in serous carcinomas. Visual inspection of the number of unfiltered somatic variants per sample identified six grade 3 endometrioid samples with high tumor mutational burden, all of which demonstrated POLE mutations, most commonly P286R and V411L. Of the grade 3 endometrioid carcinomas, those with POLE mutations were less likely to have risk factors necessitating adjuvant treatment than those with low tumor mutational burden. Targeted sequencing was unable to assign samples to microsatellite unstable, copy number low, and copy number high subgroups. Conclusions Targeted sequencing can predict the presence of POLE mutations based on the tumor mutational burden. However, targeted sequencing alone is inadequate to classify endometrial cancers into molecular subgroups identified by The Cancer Genome Atlas.


2018 ◽  
Author(s):  
SR Rosario ◽  
MD Long ◽  
HC Affronti ◽  
AM Rowsam ◽  
KH Eng ◽  
...  

AbstractUnderstanding the levels of metabolic dysregulation in different disease settings is vital for the safe and effective incorporation of metabolism-targeted therapeutics in the clinic. Using transcriptomic data from 10,704 tumor and normal samples from The Cancer Genome Atlas, across 26 disease sites, we developed a novel bioinformatics pipeline that distinguishes tumor from normal tissues, based on differential gene expression for 114 metabolic pathways. This pathway dysregulation was confirmed in separate patient populations, further demonstrating the robustness of this approach. A bootstrapping simulation was then applied to assess whether these alterations were biologically meaningful, rather than expected by chance. We provide distinct examples of the types of analysis that can be accomplished with this tool to understand cancer specific metabolic dysregulation, highlighting novel pathways of interest in both common and rare disease sites. Utilizing a pathway mapping approach to understand patterns of metabolic flux, differential drug sensitivity, can accurately be predicted. Further, the identification of Master Metabolic Transcriptional Regulators, whose expression was highly correlated with pathway gene expression, explains why metabolic differences exist in different disease sites. We demonstrate these also have the ability to segregate patient populations and predict responders to different metabolism-targeted therapeutics.


2018 ◽  
Vol 33 (3) ◽  
pp. 293-300 ◽  
Author(s):  
Min-hang Zhou ◽  
Hong-wei Zhou ◽  
Mo Liu ◽  
Jun-zhong Sun

Purpose: The role of microRNA (miRNA) in cholangiocarcinoma was not clear. The aim of this study was to find the potential diagnostic and prognostic miRNA in cholangiocarcinoma patients. Methods: The miRNA expression profiles in cholangiocarcinoma patients from The Cancer Genome Atlas and Gene Expression Omnibus (GSE53870) were analyzed. The comparison of overall survival was performed using the Kaplan–Meier method. The targeted genes of prognostic miRNA were identified in miRanda, PicTar, or TargetScan, and their cell signaling pathways were analyzed by the Database for Annotation, Visualization and Integrated Discovery. Results: In The Cancer Genome Atlas and the Gene Expression Omnibus miRNA dataset, miR-92b and miR-99a were found with concordant directionality, up-regulated and down-regulated, respectively. In The Cancer Genome Atlas survival data, patients with the high level of miR-99b had obviously shorter overall survival time ( P=0.038). However, the level of miR-99a was not found to be significant. The 17 shared target genes of miR-92b were identified, such as DAB21IP, BCL21L11, SPHK2, PER2, and TSC1. The related pathways included positive regulation of transcription, positive regulation of cellular biosynthetic process, regulation of programmed cell death, etc. Conclusion: miR-92b was up-regulated in cholangiocarcinoma compared with normal controls. The high level of miR-92b was associated with adverse outcomes in cholangiocarcinoma patients, which might be partly explained by the targeted genes of miR-92b and their signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document