Altered expression of connexin43 contributes to the arrhythmogenic substrate in early stage heart failure of cardiomyopathic hamster

2006 ◽  
Vol 41 (6) ◽  
pp. 1052-1053
Author(s):  
T SATO ◽  
T OHKUSA ◽  
H HONJO ◽  
S SUZUKI ◽  
Y ISHIGURO ◽  
...  
2005 ◽  
Vol 11 (9) ◽  
pp. S296
Author(s):  
Takashi Sato ◽  
Tomoko Ohkusa ◽  
Haruo Honjo ◽  
Shinsuke Suzuki ◽  
Tomo Matsumoto ◽  
...  

2004 ◽  
Vol 10 (5) ◽  
pp. S164
Author(s):  
Sato Takashi ◽  
Ohkusa Tomoko ◽  
Suzuki Shinsuke ◽  
Matsumoto Tomo ◽  
Hisamatsu Yuji ◽  
...  

2008 ◽  
Vol 294 (3) ◽  
pp. H1164-H1173 ◽  
Author(s):  
Takashi Sato ◽  
Tomoko Ohkusa ◽  
Haruo Honjo ◽  
Shinsuke Suzuki ◽  
Masa-aki Yoshida ◽  
...  

Heart failure is known to predispose to life-threatening ventricular tachyarrhythmias even before compromising the systemic circulation, but the underlying mechanism is not well understood. The aim of this study was to clarify the connexin43 (Cx43) gap junction remodeling and its potential role in the pathogenesis of arrhythmias during the development of heart failure. We investigated stage-dependent changes in Cx43 expression in UM-X7.1 cardiomyopathic hamster hearts and associated alterations in the electrophysiological properties using a high-resolution optical mapping system. UM-X7.1 hamsters developed left ventricular (LV) hypertrophy by ages 6∼10 wk and showed a moderate reduction in LV contractility at age 20 wk. Appreciable interstitial fibrosis was recognized at these stages. LV mRNA and protein levels of Cx43 in UM-X7.1 were unaffected at age 10 wk but significantly reduced at 20 wk. The expression level of Ser255-phosphorylated Cx43 in UM-X7.1 at age 20 wk was significantly greater than that in control golden hamsters at the same age. In UM-X7.1 at age 10 wk, almost normal LV conduction was preserved, whereas the dispersion of action potential duration was significantly increased. UM-X7.1 at age 20 wk showed significant reduction of cardiac space constant, significant decrease in conduction velocity, marked distortion of activation fronts, and pronounced increase in action potential duration dispersion. Programmed stimulation resulted in sustained ventricular tachycardia or fibrillation in UM-X7.1. LV activation during polymorphic ventricular tachycardia was characterized by multiple phase singularities or wavebreaks. During the development of heart failure in the cardiomyopathic hamster, alterations of Cx43 expression and phosphorylation in concert with interstitial fibrosis may create serious arrhythmogenic substrate through an inhibition of cell-to-cell coupling.


2005 ◽  
Vol 26 (6) ◽  
pp. 737-744 ◽  
Author(s):  
Lin-lin LIU ◽  
Li-kun GONG ◽  
Xin-ming QI ◽  
Yan CAI ◽  
Hui WANG ◽  
...  

Author(s):  
Swee-Suak Ko ◽  
Min-Jeng Li ◽  
Yi-Cheng Ho ◽  
Chun-Ping Yu ◽  
Ting-Ting Yang ◽  
...  

Abstract GAMYB, UDT1, TIP2/bHLH142, TDR, and EAT1/DTD are important transcription factors (TFs) that play a crucial role during rice pollen development. This study demonstrates that bHLH142 acts downstream of UDT1 and GAMYB and works as a “hub” in these two pollen pathways. We show that GAMYB modulates bHLH142 expression through specific binding to the MYB motif of bHLH142 promoter during early stage of pollen development; while TDR acts as a transcriptional repressor of the GAMYB modulation of bHLH142 by binding to the E-box close to the MYB motif on the promoter. The altered expression of TFs highlights the importance that a tight, precise, and coordinated regulation among these TFs is essential for normal pollen development. Most notably, this study illustrates the regulatory pathways of GAMYB and UDT1 that rely on bHLH142 in a direct and an indirect manner, respectively, and function in different tissues with distinct biological functions during pollen development. This study advances our understanding of the molecular mechanisms of rice pollen development.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Yujie Zhu ◽  
Steven M Pogwizd

Introduction: Females can be more arrhythmogenic than males, and this sex difference can persist with development of chronic heart failure (CHF). The aim of this study was to investigate sex differences in the arrhythmogenic substrate in control dogs and in a new arrhythmogenic canine model of CHF. Methods: CHF was induced in 30 dogs by aortic insufficiency and aortic constriction. Holter monitoring assessed VT and PVCs from 30 dogs, as well as traditional HRV measures and nonlinear dynamics (including correlation dimension (CD), detrended fluctuations analysis α1 (DFAα1), and Shannon entropy (SE)) at baseline, 240 days (240d) and 720 days (720d) after CHF induction. Results: At baseline, females had lower LF/HF (0.27±0.03 vs 0.33±0.02, p=0.04), CD (1.60±0.17 vs 2.21±0.15, p=0.01), DFAα1 (0.62±0.03 vs 0.72±0.03, p=0.03), and SE (2.99±0.02 vs 3.10±0.03, p=0.03 vs males). Females lacked circadian variation in LF/HF, DFAα1, and SE while males had circadian variation in all of these. Of 11 dogs with frequent runs of VT and PVCs, 95% and 91% of total VT runs and total PVCs, respectively, were in females. With CHF, all these linear and nonlinear parameters progressively declined in males and females. CHF females had less decline in LF/HF than males so that by 720 days there was no more sex difference (0.24±0.06, 0.17±0.03 in females vs 0.22±0.05, 0.18±0.01 in males at 240d, 720d). However, for nonlinear parameters of CD, DFAα1, and SE, CHF females had lower values than males (CD: 1.56±0.21, 0.99±0.32 vs 1.87±0.24, 1.50±0.34; DFAα1: 0.51±0.05, 0.43±0.04 vs 0.54±0.07, 0.48±0.04; and SE 2.93±0.08, 2.76±0.08 vs 3.01±0.11, 2.91±0.04 in females vs males at 240d, 720d). With CHF, circadian variation in CD, DFAα1, and SE were lost in both males and females. Conclusions: There are sex differences in the arrhythmogenic substrate in control dogs and in this new arrhythmogenic canine model of moderate CHF. At baseline, females have lower sympathetic stimulation, reduced cardiac chaos, and loss of circadian variation in nonlinear dynamics. With CHF, sex differences in nonlinear dynamics persist; this reflects a loss of complexity and fractal properties that could contribute to increased arrhythmias in female CHF dogs.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Tsung-Hsien Chen ◽  
Shan-Wen Liu ◽  
Mei-Ru Chen ◽  
Kurt M Lin

Whereas aggregation of intracellular proteins was linked to the initiation of cardiac myopathy, the sequence of participating events, including myocyte apoptosis, autophagy, necrosis and fibrosis as the underlying mechanisms leading to heart failure, was not clear. Green fluorescent protein (GFP) and its derivatives induced cardiac dysfunction in mice when expressed in high quantity; however, the mechanism underlying the aggregation of fluorescent protein leading to heart failure remains unexplored.We created a transgenic mouse with switchable expression of the GFP monomer or the expression of DsRed, a red fluorescent protein (RFP) tetramer that tends to aggregate into a large protein complex. GFP mice were free of cardiac symptoms; in contrast, RFP mice with homozygous DsRed alleles developed myocyte necrosis, carditis, ventricular hypertrophy and fibrosis, left atrium thrombosis, dilated heart failure and death at the age of approximately five months. The hemizygote mice displayed similar symptoms at a later age. The expression of the microtubule-associated protein 1 light chain 3 cleaved isoform II (LC3 II) and transglutaminase 2, and the expression of many myopathy- and fibrosis-related genes were significantly induced in the hearts of two-month-old RFP mice. Together with the findings of increased autophagosomes, lysosomes and dysfunctional mitochondria, these results suggest a marked induction of myocyte autophagy and fibrosis as the main underlying mechanism of heart failure in RFP mice. Interestingly, apoptosis was not elevated in RFP hearts. One of the most up-regulated genes in the early stage RFP heart was the tissue inhibitor of matrix metalloproteinases type 1 (TIMP-1), corroborating the role of TIMP-1 in cardiac remodeling and anti-apoptotic activity. The heart-origin of the morbidity in RFP mice was confirmed by expressing DsRed tetramers specifically in cardiac tissues, and the same phenotypes as in RFP mice were observed. In summary, in cardiac myocytes under the stress of protein aggregation, strong induction of TIMP-1 and down-regulation of MMP activity may play a significant role in enhancing the synthesis of extracellular matrix, resulting in fibrosis and heart failure.


Sign in / Sign up

Export Citation Format

Share Document