scholarly journals Ventricular myosin modifies in vitro step-size when phosphorylated

2014 ◽  
Vol 72 ◽  
pp. 231-237 ◽  
Author(s):  
Yihua Wang ◽  
Katalin Ajtai ◽  
Thomas P. Burghardt
Keyword(s):  
2014 ◽  
Vol 106 (2) ◽  
pp. 563a
Author(s):  
Yihua Wang ◽  
Katalin Ajtai ◽  
Thomas P. Burghardt
Keyword(s):  

2018 ◽  
Author(s):  
Yihua Wang ◽  
Katalin Ajtai ◽  
Thomas P. Burghardt

ABSTRACTNative cardiac ventricular myosin (βmys) translates actin under load by transducing ATP free energy into mechanical work on actin during muscle contraction. Unitary βmys translation of actin is the myosin step-size. In vitro and in vivo βmys regulates contractile force and velocity by remixing 3 different step-sizes with stepping frequencies autonomously adapted to workload. Cardiac and skeletal actin isoforms have a specific 1:4 stoichiometry in normal adult human ventriculum. Human adults with inheritable hypertrophic cardiomyopathy (HCM) up-regulate skeletal actin in ventriculum suggesting that increasing skeletal/cardiac actin stoichiometry also adapts myosin force-velocity to respond to the muscle’s inability to meet demand.Nanometer scale displacement of quantum dot (Qdot) labeled actin under resistive load when impelled by βmys measures single myosin force-velocity in vitro in the Qdot assay. Unitary displacement classification constraints introduced here better separates myosin based signal from background upgrading step-size spatial resolution to the sub-nanometer range. Single βmys force-velocity for skeletal vs cardiac actin substrates was compared using the Qdot assay.Two competing myosin strain-sensitive mechanisms regulate step-size choices dividing mechanical characteristics into low- and high-force regimes. The actin isoforms alter myosin strain-sensitive regulation such that onset of the high-force regime, where a short step-size is a large or major contributor, is offset to higher loads by a unique cardiac ELC N-terminus/cardiac-actin contact at Glu6/Ser358. It modifies βmys force-velocity by stabilizing the ELC N-terminus/cardiac-actin association. Uneven onset of the high-force regime for skeletal vs cardiac actin dynamically changes force-velocity characteristics as skeletal/cardiac actin fractional content increases in diseased muscle.


2017 ◽  
Vol 29 (1) ◽  
pp. 129 ◽  
Author(s):  
C. M. Owen ◽  
M. Barceló-Fimbres ◽  
J. L. Altermatt ◽  
L. F. Campos-Chillon

In vitro-produced (IVP) embryos experience poor cryotolerance due to metabolic changes during in vitro culture causing increased lipid accumulation and apoptosis post-thaw. We hypothesised that embryos cultured in a novel SOF for conventional freezing media (SCF1), dehydrated, and allowed longer equilibration before conventional slow freezing would increase post-thaw survival and decrease apoptosis. IVP embryos were produced in 9 replicates by oocytes (n = 3172) aspirated from abattoir ovaries, matured for 23 h, fertilized with semen from 1 of 4 bulls, and cultured in conventional SOF media or SCF1 in 38.5°C in 5% O2, 5% CO2, and 90% N2. Stage 7 blastocysts were stained with 1 µg mL−1 Nile Red for lipid content and 300 nM Mitotracker Red CMX-Rosamine for mitochondrial polarity. Remaining blastocysts were slow-frozen by 1 of 4 protocols: 2-min dehydration in 0 or 0.6 M sucrose in holding media before equilibration (10 or 20 min) in conventional freezing media (1.5 M ethylene glycol and 0.5 M sucrose in holding media). Embryos were thawed and assessed for re-expansion at 48 h and surviving embryos were stained with 4′6-diamidino-2-phenylindole (DAPI) and a TUNEL assay to determine apoptosis. Ten images per embryo were acquired by confocal microscopy using a 5-µM step size at 40× magnification. Fluorescence of Nile Red and Mitotracker was measured by IMAGE PRO software, and cells stained for TUNEL were analysed by a cell counter plug-in. Blastocyst rate, Nile Red, and Mitotracker data (Table 1) were analysed by one-way ANOVA and means separated by Tukey’s HSD. Post-thaw survival and apoptotic levels (Table 1) were analysed as a factorial 2 (SOF and SCF1) × 2 (0 and 0.6 M sucrose) × 2 (10 and 20 min), and means separated by Tukey’s HSD. No interactions occurred between factors so they were dropped from the model and only main effects are shown. Results indicate that SCF1 increased blastocyst rate, mitochondrial polarity, and post-thaw survival and decreased lipid content and post-thaw apoptosis (P < 0.01). A 20-min equilibration time decreased apoptosis (P < 0.01) and tended to increase post-thaw survival (P < 0.1), suggesting that cryotolerance is improved in embryos cultured in SCF1 and equilibrated for 20 min. Table 1.Effect of media on development, lipid content and mitochondrial polarity (top) and of media, equilibration and dehydration on post-thaw survival and apoptosis (bottom)


2015 ◽  
Vol 112 (36) ◽  
pp. 11235-11240 ◽  
Author(s):  
Richard K. Brizendine ◽  
Diego B. Alcala ◽  
Michael S. Carter ◽  
Brian D. Haldeman ◽  
Kevin C. Facemyer ◽  
...  

It is not known which kinetic step in the acto-myosin ATPase cycle limits contraction speed in unloaded muscles (V0). Huxley’s 1957 model [Huxley AF (1957) Prog Biophys Biophys Chem 7:255–318] predicts that V0 is limited by the rate that myosin detaches from actin. However, this does not explain why, as observed by Bárány [Bárány M (1967) J Gen Physiol 50(6, Suppl):197–218], V0 is linearly correlated with the maximal actin-activated ATPase rate (vmax), which is limited by the rate that myosin attaches strongly to actin. We have observed smooth muscle myosin filaments of different length and head number (N) moving over surface-attached F-actin in vitro. Fitting filament velocities (V) vs. N to a detachment-limited model using the myosin step size d = 8 nm gave an ADP release rate 8.5-fold faster and ton (myosin’s attached time) and r (duty ratio) ∼10-fold lower than previously reported. In contrast, these data were accurately fit to an attachment-limited model, V = N·v·d, over the range of N found in all muscle types. At nonphysiologically high N, V = L/ton rather than d/ton, where L is related to the length of myosin’s subfragment 2. The attachment-limited model also fit well to the [ATP] dependence of V for myosin-rod cofilaments at three fixed N. Previously published V0 vs. vmax values for 24 different muscles were accurately fit to the attachment-limited model using widely accepted values for r and N, giving d = 11.1 nm. Therefore, in contrast with Huxley’s model, we conclude that V0 is limited by the actin–myosin attachment rate.


Open Biology ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 170240 ◽  
Author(s):  
Yihua Wang ◽  
Chen-Ching Yuan ◽  
Katarzyna Kazmierczak ◽  
Danuta Szczesna-Cordary ◽  
Thomas P. Burghardt

Myosin transduces ATP free energy into mechanical work in muscle. Cardiac muscle has dynamically wide-ranging power demands on the motor as the muscle changes modes in a heartbeat from relaxation, via auxotonic shortening, to isometric contraction. The cardiac power output modulation mechanism is explored in vitro by assessing single cardiac myosin step-size selection versus load. Transgenic mice express human ventricular essential light chain (ELC) in wild- type (WT), or hypertrophic cardiomyopathy-linked mutant forms, A57G or E143K, in a background of mouse α-cardiac myosin heavy chain. Ensemble motility and single myosin mechanical characteristics are consistent with an A57G that impairs ELC N-terminus actin binding and an E143K that impairs lever-arm stability, while both species down-shift average step-size with increasing load. Cardiac myosin in vivo down-shifts velocity/force ratio with increasing load by changed unitary step-size selections. Here, the loaded in vitro single myosin assay indicates quantitative complementarity with the in vivo mechanism. Both have two embedded regulatory transitions, one inhibiting ADP release and a second novel mechanism inhibiting actin detachment via strain on the actin-bound ELC N-terminus. Competing regulators filter unitary step-size selection to control force-velocity modulation without myosin integration into muscle. Cardiac myosin is muscle in a molecule.


1990 ◽  
Vol 258 (1) ◽  
pp. C171-C178 ◽  
Author(s):  
S. Bassnett ◽  
L. Reinisch ◽  
D. C. Beebe

In the present paper, laser spectroscopy was used to evaluate the utility of a new fluorochrome, carboxyseminaphthorhodafluor-1 (Snarf-1), for single excitation-dual emission ratio measurement of intracellular pH (pHi). The emission spectrum of Snarf-1 showed clear pH-dependent shifts, and emission ratios calculated from the 640 and 587 nm maxima were a sensitive indicator of pH. When irradiated in Cunningham chambers, solutions of Snarf-1 were rapidly bleached, and at pH 7.3 or higher, this bleaching led to a decrease in the 640/587 nm emission ratio. These ratio changes were also observed in intracellular measurements on lens embryonic epithelial cells under conditions in which the entrapped dye was rapidly bleached. As the laser dosage was reduced (by increasing the step size between sample points), bleaching could be reduced to very low levels, and under these conditions, the ratio remained constant. Snarf-1 loaded into lens epithelial explants was calibrated intracellularly using nigericin. Intracellular calibration curves were shifted to more alkaline values than in vitro curves. Intracellular calibration allowed estimates of pHi that were in reasonable agreement with previously published values for lens tissue. Potential artifacts arising from differential photobleaching and intracellular-in vitro calibration are discussed.


2021 ◽  
Vol 22 (2) ◽  
pp. 578
Author(s):  
Anise Asaadi ◽  
Nima Azari Dolatabad ◽  
Hadi Atashi ◽  
Annelies Raes ◽  
Petra Van Damme ◽  
...  

Extracellular vesicles (EVs) have been isolated from follicular (FF) and ampullary oviduct fluid (AOF), using different isolation methods. However, it is not clear whether different purification methods can affect the functionality of resulting EVs. Here, we compared two methods (OptiPrep™ density gradient ultracentrifugation (ODG UC) and single-step size exclusion chromatography (SEC) (qEV IZON™ single column)) for the isolation of EVs from bovine FF and AOF. Additionally, we evaluated whether the addition of EVs derived either by ODG UC or SEC from FF or AOF during oocyte maturation would yield extra benefits for embryo developmental competence. The characterization of EVs isolated using ODG UC or SEC from FF and AOF did not show any differences in terms of EV sizes (40–400 nm) and concentrations (2.4 ± 0.2 × 1012−1.8 ± 0.2 × 1013 particles/mL). Blastocyst yield and quality was higher in groups supplemented with EVs isolated from FF and AOF by ODG UC, with higher total cell numbers and a lower apoptotic cell ratio compared with the other groups (p < 0.05). Supplementing in vitro maturation media with EVs derived by ODG UC from AOF was beneficial for bovine embryo development and quality.


Sign in / Sign up

Export Citation Format

Share Document