scholarly journals Corrigendum to “Anti-androgenic therapy with finasteride improves cardiac function, attenuates remodeling and reverts pathologic gene-expression after myocardial infarction in mice” Journal of Molecular and Cellular Cardiology 122 (2018) 114–124

2018 ◽  
Vol 125 ◽  
pp. 205
Author(s):  
Natali Froese ◽  
Honghui Wang ◽  
Carolin Zwadlo ◽  
Yong Wang ◽  
Andrea Grund ◽  
...  
2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Ramon Diaz Trelles ◽  
Maria Cecilia Scimia ◽  
Pilar Ruiz Lozano ◽  
Mark Mercola

Cardiac microvasculature density is critical for a correct cardiac function under normal and stress conditions. We found that the transcription factor RBPJ, downstream of the Notch signalling, can regulate angiogenic factors gene expression by repression (normal homeostasis) or activation (stress) and also by modulating the hypoxia induced angiogenic response. Accordingly, in normal conditions cardiomyocyte specific RBPJ KO adult mice hearts show a denser microvasculature. Isolated mouse adult cardiomyocytes show increased gene expression and promoter hyperacetylation and hypermethylation of angiogenic factors and Notch target genes (like HES1). Stress induced by myocardial infarction (MI) or cardiac overload (TAC) activate an angiogenic response to compensate the increased oxygen demand. Notch pathway is activated and RBPJ accumulated in the nucleus after MI and TAC. After TAC, deletion of RBPJ did not block hypertrophy induction, but prevented the increase in angiogenic factor production and microvessel density that normally occurs in response to increased workload. Remarkably, the KO preserved cardiac function and reduced cell death and fibrosis after myocardial infarction. Thus, RBPJ acts in cardiomyocytes as a master factor orchestrating homeostatic and disease-induced angiogenesis, and modulating RBPJ protects against ischemic injury.


2007 ◽  
Vol 293 (5) ◽  
pp. H2870-H2877 ◽  
Author(s):  
Krystyna M. Shioura ◽  
David L. Geenen ◽  
Paul H. Goldspink

Myocardial infarction (MI) is a major cause of heart failure (HF) with the progressive worsening of cardiac performance due to structural and functional alterations. Therefore, we studied cardiac function in adult mice following MI using the Millar pressure-volume (P-V) conductance catheter system in vivo during the later phase of compensatory remodeling and decompensation to HF. We evaluated load-dependent and -independent parameters in control and 2-, 4-, 6-, and 10-wk post-MI mice and integrated changes in function with changes in gene expression. Our results indicated a significant deterioration of cardiac function in post-MI mice over time, reflected first by systolic dysfunction, followed by a transient improvement before further decline in both systolic and diastolic function. Associated with the function and adaptive remodeling were transient changes in fetal gene and extracellular matrix gene expression. However, undermining the compensatory remodeling response was a continual decline in cardiac contractility, which promoted the transition into failure. Our study provided a scheme of integrated cardiac function and gene expression changes occurring during the adaptive and maladaptive response of the heart independent of systemic vascular properties during the transition to HF following MI in mice. P-V loop analysis was used to quantitatively evaluate the gradual deterioration in cardiac function post-MI. P-V loop analysis was found to be an appropriate method for assessment of global cardiac function under varying load-dependent and -independent conditions in the murine model with many similarities to data obtained from larger animals and humans.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
David Sacerdoti ◽  
Sumit R Monu ◽  
Paola Pesce ◽  
Stephen J Peterson ◽  
Komal Sodhi ◽  
...  

Rational: Angiogenesis is essential in order to increase blood circulation in infarcted tissue of MI (Myocardial infarction). Increased Heme-Oxygenase (HO)-1 gene expression increases angiogenic proteins, e.g. VEGF, bFGF, EGF, angiopoietin and adiponectin. Objective: To investigate whether increased levels of HO-1, after the occurrence of a MI, improves angiogenesis and capillary formation in ischemic myocardium, thereby improving cardiac function. METHODS: Experimental MI was induced by LAD (Left anterior descending artery) ligation. C57BL6 mice were divided into 4 groups: Sham; MI; 5 days after MI treated with the HO-1 inducer, cobalt protoporphyrinIX (CoPP); and, CoPP in the presence of the HO activity inhibitor, Stannous Mesoporphyrin (SnMP). HO-1 downstream signaling proteins were determined including VEGF, CD31 and adiponectin. Echocardiography was performed weekly for 4 weeks after surgery. Results: 5 days after MI, CoPP treatment significantly increased VEGF (p<0.05 vs.MI), CD31 (p<0.05 vs.MI), and adiponectin levels (p<0.05 vs.MI). These findings were associated with a significant increase in capillary formation and blood flow in CoPP-treated animals (p<0.05 vs.MI). Echocardiography showed that left ventricle dilatation, measured as end diastolic area (EDA), was significantly reduced in CoPP- treated animals compared to MI groups (EDA: MI: 0.216±0.02cm2; MI+CoPP: 0.172±0.03 cm2; (-13%) p<0.01). This was associated with a significant decrease in apoptosis and fibrosis (P<0.05). These beneficial effects were reversed by SnMP administration. Conclusion: HO-1 improved cardiac function and enhanced angiogenesis via the recruitment of pro-angiogenic factors.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Zhiqiang Lin ◽  
Alexander von Gise ◽  
Pingzhu Zhou ◽  
Qing Ma ◽  
Jinghai Chen ◽  
...  

Background: Yes-Associated Protein (YAP), the terminal effector of the Hippo signaling pathway, is crucial for regulating embryonic cardiomyocyte proliferation. We hypothesized that YAP activation after myocardial infarction would preserve cardiac function and improve survival. Methods and Results: In this study, we used a cardiac-specific, inducible expression system to activate YAP in adult mouse heart. Activation of YAP in adult heart promoted cardiomyocyte proliferation and did not deleteriously affect heart function. Furthermore, YAP activation after myocardial infarction (MI) preserved heart function and reduced infarct size. Using adeno-associated virus subtype 9 (AAV9) as a delivery vector, we expressed human YAP in the adult murine myocardium immediately after MI. We found that AAV9:hYAP significantly improved cardiac function and mouse survival. AAV9:hYAP did not exert its salutary effects by reducing cardiomyocyte apoptosis. Rather, AAV9:hYAP stimulated adult cardiomyocyte proliferation. Gene expression profiling indicated that AAV9:hYAP stimulated cell cycle gene expression, activated of components of the inflammatory response, and promoted a less mature cardiac gene expression signature. Conclusions: Cardiac specific YAP activation after MI mitigated myocardial injury, improved cardiac function, and enhanced survival. These findings suggest that therapeutic activation of YAP or its downstream targets, potentially through AAV-mediated gene therapy, may be a strategy to improve outcome after MI.


2004 ◽  
Vol 82 (12) ◽  
pp. 1118-1127 ◽  
Author(s):  
Bin Ren ◽  
Qiming Shao ◽  
Pallab K Ganguly ◽  
Paramjit S Tappia ◽  
Nobuakira Takeda ◽  
...  

Although it is generally accepted that the efficacy of imidapril, an angiotensin-converting enzyme inhibitor, in congestive heart failure (CHF) is due to improvement of hemodynamic parameters, the significance of its effect on gene expression for sarcolemma (SL) and sarcoplasmic reticulum (SR) proteins has not been fully understood. In this study, we examined the effects of long-term treatment of imidapril on mortality, cardiac function, and gene expression for SL Na+/K+ ATPase and Na+–Ca2+ exchanger as well as SR Ca2+ pump ATPase, Ca2+ release channel (ryanodine receptor), phospholamban, and calsequestrin in CHF due to myocardial infarction. Heart failure subsequent to myocardial infarction was induced by occluding the left coronary artery in rats, and treatment with imidapril (1 mg·kg–1·day–1) was started orally at the end of 3 weeks after surgery and continued for 37 weeks. The animals were assessed hemody nam ically and the heart and lung were examined morphologically. Some hearts were immediately frozen at –70 °C for the isolation of RNA as well as SL and SR membranes. The mortality of imidapril-treated animals due to heart failure was 31% whereas that of the untreated heart failure group was 64%. Imidapril treatment improved cardiac performance, attenuated cardiac remodeling, and reduced morphological changes in the heart and lung. The depressed SL Na+/K+ ATPase and increased SL Na+–Ca2+ exchange activities as well as reduced SR Ca2+ pump and SR Ca2+ release activities in the failing hearts were partially prevented by imidapril. Although changes in gene expression for SL Na+/K+ ATPase isoforms as well as Na+–Ca2+ exchanger and SR phospholamban were attenuated by treatments with imidapril, no alterations in mRNA levels for SR Ca2+ pump proteins and Ca2+ release channels were seen in the untreated or treated rats with heart failure. These results suggest that the beneficial effects of imidapril in CHF may be due to improvements in cardiac performance and changes in SL gene expression.Key words: sarcolemmal Na+/K+ ATPase, Na+–Ca2+ exchange, sarcoplasmic reticulum, heart failure, ACE inhibition.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Jin Jin Kim ◽  
Eun-Hye Park ◽  
Hyo Eun Park ◽  
Eunmin Kim ◽  
Young Choi ◽  
...  

Background: The efficacy of transplantation of default mesenchymal stem cells (MSCs) is controversial because of their limited plasticity and decreased function in elderly patients with myocardial infarction (MI). We investigated whether epigenetically reprogrammed-MSCs ameliorate myocardial remodeling in a mouse model of MI. Methods: Bone marrow-derived MSCs were sequentially treated with 5 mM/L of valproic acid and 100 nM/L of 5-azacytidine for 48 hours. Quantitative RT-PCR was performed to evaluate the effect of epigenetic modifiers on the gene expression of MSCs. 2 x 105 default MSCs, 2 x 105 epigenetically reprogrammed-MSCs, or phosphate-buffered saline were injected into peri-infarct zone immediately after ligating proximal portion of left anterior descending artery. On days 28 after MI, in vivo cardiac magnetic resonance (CMR) and harvest of heart tissue was sequentially performed. Results: Epigenetic modification of MSCs induced gene expression of anti-inflammatory markers such as transforming growth factor-β, indoleamine 2,3-dioxygenase. Fibroblast growth factor-β increased 37.5% and myocyte-specific enhancer factor 2C increased 36.8% at the mRNA level. Transplantation of modified-MSCs showed improved ejection fraction on CMR. In histopathologic analysis, infarct size was significantly decreased in modified-MSCs transplanted mice (p=0.002). When assessing capillary density of peri-infarct zone, larger number of CD31+ staining vascular structures was observed in modified-MSCs transplanted mice. Immunofluorescence stain showed marked increase of CD4+CD25+Foxp3+ regulatory T cells as well as CD68+MR+ M2 macrophage and decrease of CD68+iNOs+ M1 macrophage in modified-MSCs transplanted mice. Conclusions: Transplantation of epigenetically reprogrammed-MSCs significantly improves cardiac function by modulating post-infarct inflammation and neoangiogenesis in a preclinical model of AMI.


1998 ◽  
Vol 39 (3) ◽  
pp. 375-388 ◽  
Author(s):  
Akihisa HANATANI ◽  
Minoru YOSHIYAMA ◽  
Shokei KIM ◽  
Takashi OMURA ◽  
Yoshiyasu IKUNO ◽  
...  

2000 ◽  
Vol 279 (6) ◽  
pp. E1319-E1324 ◽  
Author(s):  
Kaie Ojamaa ◽  
Agnes Kenessey ◽  
Rajesh Shenoy ◽  
Irwin Klein

In a rat model of acute myocardial infarction (MI) produced by coronary artery ligation, thyroid hormone metabolism was altered with significant reductions (54%) in serum triiodo-l-thyronine (T3), the cellular active hormone metabolite. T3 has profound effects on the heart; therefore, rats were treated with T3 after acute MI for 2 or 3 wk, at either replacement or elevated doses, to determine whether cardiac function and gene expression could be normalized. Acute MI resulted in a 50% ( P < 0.001) decrease in percent ejection fraction (%EF) with a 32–35% increase ( P < 0.01) in compensatory left ventricle (LV) hypertrophy. Treatment of the MI animals with either replacement or elevated doses of T3 significantly increased %EF to 64 and 73% of control, respectively. Expression levels of several T3-responsive genes were altered in the hypertrophied LV after MI, including significant decreases in α-myosin heavy chain (MHC), sarcoplasmic reticulum calcium-activated ATPase (SERCA2), and Kv1.5 mRNA, whereas β-MHC and phospholamban (PLB) mRNA were significantly increased. Normalization of serum T3 did not restore expression of all T3-regulated genes, indicating altered T3 responsiveness in the postinfarcted myocardium. Although β-MHC and Kv1.5 mRNA content was returned to control levels, α-MHC and SERCA2 were unresponsive to T3 at replacement doses, and only at higher doses of T3 was α-MHC mRNA returned to control values. The present study showed that acute MI in the rat was associated with a fall in serum T3 levels, LV dysfunction, and altered expression of T3-responsive genes and that T3 treatment significantly improved cardiac function, with normalization of some, but not all, of the changes in gene expression.


Sign in / Sign up

Export Citation Format

Share Document