scholarly journals Genetic deletion of soluble 5′-nucleotidase II reduces body weight gain and insulin resistance induced by a high-fat diet

2019 ◽  
Vol 126 (4) ◽  
pp. 377-387 ◽  
Author(s):  
Manuel Johanns ◽  
Samanta Kviklyte ◽  
Sheng-Ju Chuang ◽  
Katrien Corbeels ◽  
Roxane Jacobs ◽  
...  
2011 ◽  
Vol 34 (8) ◽  
pp. 1257-1263 ◽  
Author(s):  
Takahiro Hayashi ◽  
Yuriko Nozaki ◽  
Makoto Nishizuka ◽  
Masahito Ikawa ◽  
Shigehiro Osada ◽  
...  

2015 ◽  
Vol 3 (3) ◽  
pp. 101-107 ◽  
Author(s):  
Sophie Holowacz ◽  
Charlotte Guigné ◽  
Gérald Chêne ◽  
Sandrine Mouysset ◽  
Angèle Guilbot ◽  
...  

2021 ◽  
Vol 14 (11) ◽  
pp. 1178
Author(s):  
Gabsik Yang ◽  
Hye Eun Lee ◽  
Jin Kyung Seok ◽  
Han Chang Kang ◽  
Yong-Yeon Cho ◽  
...  

Inflammation and immunity are linked to the onset and development of obesity and metabolic disorders. Pattern recognition receptors (PRRs) are key regulators of inflammation and immunity in response to infection and stress, and they have critical roles in metainflammation. In this study, we investigated whether RIG-I (retinoic acid-inducible gene I)-like receptors were involved in the regulation of obesity-induced metabolic stress in RIG-I knockout (KO) mice fed a high-fat diet (HFD). RIG-I KO mice fed an HFD for 12 weeks showed greater body weight gain, higher fat composition, lower lean body mass, and higher epididymal white adipose tissue (eWAT) weight than WT mice fed HFD. In contrast, body weight gain, fat, and lean mass compositions, and eWAT weight of MDA5 (melanoma differentiation-associated protein 5) KO mice fed HFD were similar to those of WT mice fed a normal diet. RIG-I KO mice fed HFD exhibited more severely impaired glucose tolerance and higher HOMA-IR values than WT mice fed HFD. IFN-β expression induced by ER stress inducers, tunicamycin and thapsigargin, was abolished in RIG-I-deficient hepatocytes and macrophages, showing that RIG-I is required for ER stress-induced IFN-β expression. Our results show that RIG-I deficiency promotes obesity and insulin resistance induced by a high-fat diet, presenting a novel role of RIG-I in the development of obesity and metabolic disorders.


PLoS ONE ◽  
2012 ◽  
Vol 7 (3) ◽  
pp. e33858 ◽  
Author(s):  
Amandine Everard ◽  
Lucie Geurts ◽  
Marie Van Roye ◽  
Nathalie M. Delzenne ◽  
Patrice D. Cani

2007 ◽  
Vol 97 (2) ◽  
pp. 389-398 ◽  
Author(s):  
Patricia Pérez-Matute ◽  
Nerea Pérez-Echarri ◽  
J. Alfredo Martínez ◽  
Amelia Marti ◽  
María J. Moreno-Aliaga

n-3 PUFA have shown potential anti-obesity and insulin-sensitising properties. However, the mechanisms involved are not clearly established. The aim of the present study was to assess the effects of EPA administration, one of the n-3 PUFA, on body-weight gain and adiposity in rats fed on a standard or a high-fat (cafeteria) diet. The actions on white adipose tissue lipolysis, apoptosis and on several genes related to obesity and insulin resistance were also studied. Control and cafeteria-induced overweight male Wistar rats were assigned into two subgroups, one of them daily received EPA ethyl ester (1 g/kg) for 5 weeks by oral administration. The high-fat diet induced a very significant increase in both body weight and fat mass. Rats fed with the cafeteria diet and orally treated with EPA showed a marginally lower body-weight gain (P = 0·09), a decrease in food intake (P < 0·01) and an increase in leptin production (P < 0·05). EPA administration reduced retroperitoneal adipose tissue weight (P < 0·05) which could be secondary to the inhibition of the adipogenic transcription factor PPARγ gene expression (P < 0·001), and also to the increase in apoptosis (P < 0·05) found in rats fed with a control diet. TNFα gene expression was significantly increased (P < 0·05) by the cafeteria diet, while EPA treatment was able to prevent (P < 0·01) the rise in this inflammatory cytokine. Adiposity-corrected adiponectin plasma levels were increased by EPA. These actions on both TNFα and adiponectin could explain the beneficial effects of EPA on insulin resistance induced by the cafeteria diet.


Sign in / Sign up

Export Citation Format

Share Document