Novel human resistin antagonist (monomeric C6A mutant) reduced body weight gain and restored insulin responsiveness in mice fed high fat diet

Author(s):  
Yacir Benomar ◽  
Gili Solomon ◽  
Hamza Amine ◽  
Ahlem Othmane ◽  
Arieh Gertler ◽  
...  
Author(s):  
Farouk K El-baz ◽  
Hanan F Aly

 Objective: This study was carried out to investigate the potential of Dunaliella salina microalgae to ameliorate obesity induced by high-fat diet (HFD) in male Wistar rats.Methods: Fifty rats weighing 150–160 g were fed HFD for 12 weeks. The rats were randomly divided into five groups of ten rats each. Obese rats were orally administered D. salina ethanolic extract (150 mg/Kg body weight), and orlistat as standard drug (12 mg/Kg body weight), for 6 weeks.Results: Treatment of obese rats with both D. salina and orlistat had a significant effect in reducing body and liver weights as well as visceral fat, inhibiting pancreatic lipase activity, decreased lipid profile, and increased fecal fat and ameliorating liver function enzymes activity, insulin, blood glucose, and leptin levels. Besides, food intake was insignificantly increased as a result of D. salina and orlistat treatments compared with normal control rats.Conclusion: It could be concluded that D. salina rich in β-carotene significantly reduced body weight gain and ameliorated several metabolic pathways implicated in obesity and its related complication. Hence, further intensive study must be carried out to formulate D. Salina extracts to apply as a promising natural anti-obesity nutraceutical drug.


PLoS ONE ◽  
2012 ◽  
Vol 7 (3) ◽  
pp. e33858 ◽  
Author(s):  
Amandine Everard ◽  
Lucie Geurts ◽  
Marie Van Roye ◽  
Nathalie M. Delzenne ◽  
Patrice D. Cani

2020 ◽  
Vol 124 (4) ◽  
pp. 396-406 ◽  
Author(s):  
Hongyang Yao ◽  
Chaonan Fan ◽  
Xiuqin Fan ◽  
Yuanyuan Lu ◽  
Yuanyuan Wang ◽  
...  

AbstractAberration in leptin expression is one of the most frequent features in the onset and progression of obesity, but the underlying mechanisms are still unclear and need to be clarified. This study investigated the effects of the absence of gut microbiota on body weight and the expression and promoter methylation of the leptin. Male C57 BL/6 J germ-free (GF) and conventional (CV) mice (aged 4–5 weeks) were fed either a normal-fat diet (NFD) or a high-fat diet (HFD) for 16 weeks. Six to eight mice from each group, at 15 weeks, were administered exogenous leptin for 7 d. Leptin expression and body weight gain in GF mice were increased by NFD with more CpG sites hypermethylated at the leptin promoter, whereas there was no change with HFD, compared with CV mice. Adipose or hepatic expression of genes associated with fat synthesis (Acc1, Fas and Srebp-1c), hydrolysis and oxidation (Atgl, Cpt1a, Cpt1c, Ppar-α and Pgc-1α) was lower, and hypothalamus expression of Pomc and Socs3 was higher in GF mice than levels in CV mice, particularly with NFD feeding. Exogenous leptin reduced body weight in both types of mice, with a greater effect on CV mice with NFD. Adipose Lep-R expression was up-regulated, and hepatic Fas and hypothalamic Socs3 were down-regulated in both types of mice. Expression of fat hydrolysis and oxidative genes (Atgl, Hsl, Cpt1a, Cpt1c, Ppar-α and Pgc-1α) was up-regulated in CV mice. Therefore, the effects of gut microbiota on the leptin expression and body weight were affected by dietary fat intake.


1999 ◽  
Vol 58 (4) ◽  
pp. 773-777 ◽  
Author(s):  
John E. Blundell ◽  
John Cooling

It is now widely accepted that obesity develops by way of genetic mechanisms conferring specific dispositions which interact with strong environmental pressures. It is also accepted that certain dispositions constitute metabolic risk factors for weight gain. It is less well accepted that certain patterns of behaviour (arising from biological demands or environmental influences) put individuals at risk of developing a positive energy balance and weight gain (behavioural risk factors). Relevant patterns of behaviour include long-lasting habits for selecting and eating particular types of foods. Such habits define two distinct groups characterized as high-fat (HF) and low-fat (LF) phenotypes. These habits are important because of the attention given to dietary macronutrients in body-weight gain and the worldwide epidemic of obesity. Considerable evidence indicates that the total amount of dietary fat consumed remains the most potent food-related risk factor for weight gain. However, although habitual intake of a high-fat diet is a behavioural risk factor for obesity, it does not constitute a biological inevitability. A habitual low-fat diet does seem to protect against the development of obesity, but a high-fat diet does not guarantee that an individual will be obese. Although obesity is much more prevalent among HF than LF, some HF are lean with BMI well within the normal range. The concept of 'different routes to obesity' through a variety of nutritional scenarios can be envisaged, with predisposed individuals varying in their susceptibility to different dietary inputs. In a particular subgroup of individuals (young adult males) HF and LF displayed quite different profiles of appetite control, response to nutrient challenges and physiological measures, including BMR, RQ, heart rate, plasma leptin levels and thermogenic responses to fat and carbohydrate meals. These striking differences suggest that HF and LF can be used as a conceptual tool to investigate the relationship between biology and the environment (diet) in the control of body weight.


Author(s):  
Heon-Myung Lee ◽  
Hong-Kun Rim ◽  
Jong-Hwan Seo ◽  
Yoon-Bum Kook ◽  
Sung-Kew Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document