Phylogenomics of the plant family Araceae

2014 ◽  
Vol 75 ◽  
pp. 91-102 ◽  
Author(s):  
Claudia L. Henriquez ◽  
Tatiana Arias ◽  
J. Chris Pires ◽  
Thomas B. Croat ◽  
Barbara A. Schaal
Keyword(s):  
2005 ◽  
Vol 166 (3) ◽  
pp. 418
Author(s):  
Davies ◽  
Savolainen ◽  
Chase ◽  
Goldblatt ◽  
Barraclough
Keyword(s):  

Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 596
Author(s):  
Anuluck Junkum ◽  
Wanchai Maleewong ◽  
Atiporn Saeung ◽  
Danita Champakaew ◽  
Arpaporn Chansang ◽  
...  

Ligusticum sinense Oliv. cv. is a species of Umbelliferae (Apiaceae), a large plant family in the order Apiales. In this study, L. sinense hexane extract nanoemulsion gel (LHE-NEG) was investigated for mosquito repellency and compared to the standard chemical, N,N-diethyl-3-methylbenzamide (DEET), with the goal of developing a natural alternative to synthetic repellents in protecting against mosquito vectors. The results demonstrated that LHE-NEG afforded remarkable repellency against Aedes aegypti, Anopheles minimus, and Culex quinquefasciatus, with median protection times (MPTs) of 5.5 (4.5–6.0), 11.5 (8.5–12.5), and 11.25 (8.5–12.5) h, respectively, which was comparable to those of DEET-nanoemulsion gel (DEET-NEG: 8.5 (7.0–9.0), 12.0 (10.0–12.5), and 12.5 (10.0–13.5) h, respectively). Evaluation of skin irritation in 30 human volunteers revealed no potential irritant from LHE-NEG. The physical and biological stability of LHE-NEG were determined after being kept under heating/cooling cycle conditions. The stored samples of LHE-NEG exhibited some changes in appearance and differing degrees of repellency between those kept for 3 and 6 heating/cooling cycles, thus providing slightly shorter MPTs of 4.25 (4.0–4.5) and 3.25 (2.5–3.5) h, respectively, when compared to those of 5.0 (4.5–6.0) h in fresh preparation. These findings encourage commercially developed LHE-based products as an alternative to conventional synthetic repellents in preventing mosquito bites and helping to interrupt mosquito-borne disease transmission.


Planta Medica ◽  
2021 ◽  
Author(s):  
Jerald J. Nair ◽  
Johannes van Staden

AbstractOver 600 alkaloids have to date been identified in the plant family Amaryllidaceae. These have been arranged into as many as 15 different groups based on their characteristic structural features. The vast majority of studies on the biological properties of Amaryllidaceae alkaloids have probed their anticancer potential. While most efforts have focused on the major alkaloid groups, the volume and diversity afforded by the minor alkaloid groups have promoted their usefulness as targets for cancer cell line screening purposes. This survey is an in-depth review of such activities described for around 90 representatives from 10 minor alkaloid groups of the Amaryllidaceae. These have been evaluated against over 60 cell lines categorized into 18 different types of cancer. The montanine and cripowellin groups were identified as the most potent, with some in the latter demonstrating low nanomolar level antiproliferative activities. Despite their challenging molecular architectures, the minor alkaloid groups have allowed for facile adjustments to be made to their structures, thereby altering the size, geometry, and electronics of the targets available for structure-activity relationship studies. Nevertheless, it was seen with a regular frequency that the parent alkaloids were better cytotoxic agents than the corresponding semisynthetic derivatives. There has also been significant interest in how the minor alkaloid groups manifest their effects in cancer cells. Among the various targets and pathways in which they were seen to mediate, their ability to induce apoptosis in cancer cells is most appealing.


2021 ◽  
Vol 22 (13) ◽  
pp. 6990
Author(s):  
Shinsuke Yasuda ◽  
Risa Kobayashi ◽  
Toshiro Ito ◽  
Yuko Wada ◽  
Seiji Takayama

Self-incompatibility (SI) is conserved among members of the Brassicaceae plant family. This trait is controlled epigenetically by the dominance hierarchy of the male determinant alleles. We previously demonstrated that a single small RNA (sRNA) gene is sufficient to control the linear dominance hierarchy in Brassica rapa and proposed a model in which a homology-based interaction between sRNAs and target sites controls the complicated dominance hierarchy of male SI determinants. In Arabidopsis halleri, male dominance hierarchy is reported to have arisen from multiple networks of sRNA target gains and losses. Despite these findings, it remains unknown whether the molecular mechanism underlying the dominance hierarchy is conserved among Brassicaceae. Here, we identified sRNAs and their target sites that can explain the linear dominance hierarchy of Arabidopsis lyrata, a species closely related to A. halleri. We tested the model that we established in Brassica to explain the linear dominance hierarchy in A. lyrata. Our results suggest that the dominance hierarchy of A. lyrata is also controlled by a homology-based interaction between sRNAs and their targets.


Author(s):  
Lubov A. Belyanina

This article is an enhancement of the authors chapter "Critical Review about Aquaponics is non-boring sciences, as a base of competence" about conceptual platform for the work of a network of regional experimental sites that work out various aspects of the implementation of design and research activities in the study of aquaponics.The chapter contains a description of the experience of creating a new component of the regional education system "Aquaponics in Education", the construction of the content of education in the educational organization, taking into account the new component; Designing a unified network of interaction between educational organizations of various types for the implementation of the author's experimental program "The Academy of non – boring Sciences. Aquaponics ". Methodical recommendations on the inclusion of innovative equipment Fish Plant Family Unit and Fish Plant Production in the educational system, the direction of design and research activities of students in the field of aquaponics are proposed.


2014 ◽  
Vol 36 (spe1) ◽  
pp. 01-16 ◽  
Author(s):  
Alma Rosa González-Esquinca ◽  
Iván De-La-Cruz-Chacón ◽  
Marisol Castro-Moreno ◽  
José Agustín Orozco-Castillo ◽  
Christian Anabi Riley- Saldaña

Chemical studies of the plant family Annonaceae have intensified in the last several decades due to the discovery of annonaceous molecules with medicinal potential (e.g., benzylisoquinoline alkaloids and acetogenins). Approximately 500 alkaloids have been identified in 138 Annonaceae species in 43 genera. In addition, until 2004, 593 annonaceous acetogenins (ACGs) had been identified, from 51 species in 13 genera.This suggests that plants from this family allocate important resources to the biosynthesis of these compounds. Despite the diversity of these molecules, their biological roles, including their physiological and/or ecological functions, are not well understood. In this study, it was provided new data describing the variety and distribution of certain alkaloids and ACGs in annonaceous plants in distinct stages of development. The potential relationships among some of these compounds and the seasonally climatic changes occurring in the plant habitat are also discussed. These data will improve our understanding of the secondary metabolism of these pharmacologically important molecules and their expression patterns during development, which will help to determine the optimal growth conditions and harvest times for their production.


2017 ◽  
Vol 107 (0) ◽  
Author(s):  
Bárbara Araújo Ribeiro Bergamini ◽  
Leonardo Lima Bergamini ◽  
Benedito Baptista dos Santos ◽  
Walter Santos de Araújo

ABSTRACT We investigated the insect gall distribution along savanna (xeric) and forest (mesic) vegetation in the Floresta Nacional de Silvânia, Goiás, Brazil. We tested if the insect gall diversity is higher in the xeric vegetation than in the mesic vegetation, as predicted by the hygrothermal stress hypothesis. The insect gall fauna was surveyed between December 2009 and June 2010 in two transects established each vegetation type. In total we found 186 insect gall morphotypes, distributed on 35 botanical families and 61 plant species. Cecidomyiidae (Diptera) induced the most insect galls (34.1%), and the plant family Fabaceae had the greatest richness of insect gall morphotypes (18). We recorded 99 insect gall morphotypes in the forest and 87 morphotypes in the savanna vegetation, being that none insect gall morphotype occurred in both habitats. We found that the insect gall richness and abundance did not differ between forest and savanna transects. On the other hand, the estimated insect gall richness was higher in the forest than in the savanna. Our findings contrary the hygrothermal stress hypothesis possibly because forest habitats have higher plant architecture complexity and occurrence of super-host taxa than the savanna habitats.


Sign in / Sign up

Export Citation Format

Share Document