scholarly journals Cytotoxic Agents in the Minor Alkaloid Groups of the Amaryllidaceae

Planta Medica ◽  
2021 ◽  
Author(s):  
Jerald J. Nair ◽  
Johannes van Staden

AbstractOver 600 alkaloids have to date been identified in the plant family Amaryllidaceae. These have been arranged into as many as 15 different groups based on their characteristic structural features. The vast majority of studies on the biological properties of Amaryllidaceae alkaloids have probed their anticancer potential. While most efforts have focused on the major alkaloid groups, the volume and diversity afforded by the minor alkaloid groups have promoted their usefulness as targets for cancer cell line screening purposes. This survey is an in-depth review of such activities described for around 90 representatives from 10 minor alkaloid groups of the Amaryllidaceae. These have been evaluated against over 60 cell lines categorized into 18 different types of cancer. The montanine and cripowellin groups were identified as the most potent, with some in the latter demonstrating low nanomolar level antiproliferative activities. Despite their challenging molecular architectures, the minor alkaloid groups have allowed for facile adjustments to be made to their structures, thereby altering the size, geometry, and electronics of the targets available for structure-activity relationship studies. Nevertheless, it was seen with a regular frequency that the parent alkaloids were better cytotoxic agents than the corresponding semisynthetic derivatives. There has also been significant interest in how the minor alkaloid groups manifest their effects in cancer cells. Among the various targets and pathways in which they were seen to mediate, their ability to induce apoptosis in cancer cells is most appealing.

2014 ◽  
Vol 9 (8) ◽  
pp. 1934578X1400900 ◽  
Author(s):  
Jerald J. Nair ◽  
Johannes van Staden

The plant family Amaryllidaceae is renowned for its unique alkaloid constituents which possess a significant array of structural diversity. Several of these alkaloids are known for their interesting biological properties, of which galanthamine and pancratistatin have acquired a privileged status due to their relevance in the pharmaceutical arena. In particular, galanthamine represents the first prescription drug emanating from the Amaryllidaceae after its approval by the FDA in 2001 for the treatment of Alzheimer's disease. Following on this commercial success there have been sustained projections for the emergence of an anticancer agent related to pancratistatin due to the potency, selectivity, low toxicity and high tolerability typifying targets of this series of alkaloids. The lycorine series of alkaloids have also garnered widespread interest as cytotoxic agents and were amongst the earliest of the Amaryllidaceae constituents to exhibit such activity. To date over 100 of such naturally-occurring or synthetically-derived alkaloids have been screened for cytotoxic effects against a number of cancer cell lines. This survey examines the cytotoxic properties of lycorine alkaloids, highlights the outcomes of structure-activity relationship orientated studies and affords plausible insights to the mechanistic rationale behind these effects.


2019 ◽  
Author(s):  
Abdelsattar M. Omar ◽  
Radwan S. Elhaggar ◽  
Martin K. Safo ◽  
Tamer M. Abdelghany ◽  
Mostafa H. Ahmed ◽  
...  

ABSTRACTCurcumin and trans-cinnamaldehyde are acrolein-based Michael acceptor compounds that are commonly found in domestic condiments, and known to cause cancer cell death via redox mechanisms. Based on the structural features of these compounds we designed and synthesized several 2-cinnamamido-N-substituted-cinnamamide (bis-cinnamamide) compounds. One of the derivatives, (Z)-2-[(E)-cinnamamido]-3-phenyl-N-propylacrylamide (1512) showed a moderate antiproliferative potency (HT116 cell line inhibition of 32.0 µM ± 2.6) with proven cellular activities leading to apoptosis. Importantly, 1512 exhibited good selectivity toxicity on cancer cells over noncancerous cells (IC50 of C-166 cell lines >100 µM), and low cancer cell resistance at 100 µM dose (growth rate 10.1±1.1%). We subsequently carried out structure activity relationship studies with 1512. Derivatives with electron rich moiety at the aryl ring of the 2-aminocinnamaide moiety exhibited strong antiproliferative action while electron withdrawing groups caused loss of activity. Our most promising compound, 4112 [(Z)-3-(1H-indol-3-yl)-N-propyl-2-[(E)-3-(thien-2-yl)propenamido)propenamide] killed cancer cells at IC50 = 0.89 ± 0.04 µM (Caco-2), 2.85 ± 1.5 (HCT-116) and 1.65 ± 0.07 (HT-29), while exhibiting much weaker potency on C-166 and BHK normal cell lines (IC50 = 71 ± 5.12 and 77.6 ± 6.2 µM, respectively). Cellular studies towards identifying the compounds mechanism of cytotoxic activities revealed that apoptotic induction occurs in part due to oxidative stress. Importantly, the compounds showed inhibition of cancer stem cells that are critical for maintaining the potential for self-renewal and stemness. The results presented here show discovery of Michael addition compounds that potently kill cancer cells by a defined mechanism, with minimal effect on normal noncancerous cell.


2020 ◽  
Vol 8 (6) ◽  
pp. 1631-1636

Sulforaphane (SFN) is a biologically active compound-based drug obtained from cruciferous vegetables, which has been investigated for its anti-tumor and chemopreventive effects. SFN shows a potential mechanism of its anti-cancer activity by binding to Macrophage Migration Inhibitory Factor (MIF) which is a pleiotropic cytokine that overexpresses in cancer cells increasing the aggressiveness of the disease. SFN can significantly inhibit the action of MIF on angiogenesis and the prevention of apoptosis in cancer cells. Preclinical studies on the anti-cancer activity of SFN showed promising results but in clinical studies, it is not yet convincing. Screening of a set of compounds chemically related to SFN can have a chance of showing promising anticancer activity. The quantitative structure activity relationship (QSAR) based on quantum mechanics has been done to derive the best mathematical model of these selected derivatives of sulforaphane for the calculation of its biological activity. These sulforaphane derivatives have been evaluated with respect to their ADMET and physicochemical properties. Validation was done to indicate the predictiveness of the model. The significant R2 value of 0.5676 between experimental and predicted biological activity and R2 cv value of 0.554 depicts a decent statistical fit of the model. A best QSAR model has been selected which has a future scope of helping in designing anti-cancerous drugs.


Author(s):  
U. Aebi ◽  
P. Rew ◽  
T.-T. Sun

Various types of intermediate-sized (10-nm) filaments have been found and described in many different cell types during the past few years. Despite the differences in the chemical composition among the different types of filaments, they all yield common structural features: they are usually up to several microns long and have a diameter of 7 to 10 nm; there is evidence that they are made of several 2 to 3.5 nm wide protofilaments which are helically wound around each other; the secondary structure of the polypeptides constituting the filaments is rich in ∞-helix. However a detailed description of their structural organization is lacking to date.


1987 ◽  
Vol 26 (01) ◽  
pp. 13-23 ◽  
Author(s):  
H. W. Gottinger

AbstractThe purpose of this paper is to report on an expert system in design that screens for potential hazards from environmental chemicals on the basis of structure-activity relationships in the study of chemical carcinogenesis, particularly with respect to analyzing the current state of known structural information about chemical carcinogens and predicting the possible carcinogenicity of untested chemicals. The structure-activity tree serves as an index of known chemical structure features associated with carcinogenic activity. The basic units of the tree are the principal recognized classes of chemical carcinogens that are subdivided into subclasses known as nodes according to specific structural features that may reflect differences in carcinogenic potential among chemicals in the class. An analysis of a computerized data base of known carcinogens (knowledge base) is proposed using the structure-activity tree in order to test the validity of the tree as a classification scheme (inference engine).


2020 ◽  
Vol 27 (9) ◽  
pp. 1387-1404 ◽  
Author(s):  
Karishma Biswas ◽  
Humaira Ilyas ◽  
Aritreyee Datta ◽  
Anirban Bhunia

Antimicrobial Peptides (AMPs), within their realm incorporate a diverse group of structurally and functionally varied peptides, playing crucial roles in innate immunity. Over the last few decades, the field of AMP has seen a huge upsurge, mainly owing to the generation of the so-called drug resistant ‘superbugs’ as well as limitations associated with the existing antimicrobial agents. Due to their resilient biological properties, AMPs can very well form the sustainable alternative for nextgeneration therapeutic agents. Certain drawbacks associated with existing AMPs are, however, issues of major concern, circumventing which are imperative. These limitations mainly include proteolytic cleavage and hence poor stability inside the biological systems, reduced activity due to inadequate interaction with the microbial membrane, and ineffectiveness because of inappropriate delivery among others. In this context, the application of naturally occurring AMPs as an efficient prototype for generating various synthetic and designed counterparts has evolved as a new avenue in peptide-based therapy. Such designing approaches help to overcome the drawbacks of the parent AMPs while retaining the inherent activity. In this review, we summarize some of the basic NMR structure based approaches and techniques which aid in improving the activity of AMPs, using the example of a 16-residue dengue virus fusion protein derived peptide, VG16KRKP. Using first principle based designing technique and high resolution NMR-based structure characterization we validate different types of modifications of VG16KRKP, highlighting key motifs, which optimize its activity. The approaches and designing techniques presented can support our peers in their drug development work.


2020 ◽  
Vol 21 (4) ◽  
pp. 429-438 ◽  
Author(s):  
Bruno Casciaro ◽  
Francesca Ghirga ◽  
Deborah Quaglio ◽  
Maria Luisa Mangoni

Cationic antimicrobial peptides (AMPs) are an interesting class of gene-encoded molecules endowed with a broad-spectrum of anti-infective activity and immunomodulatory properties. They represent promising candidates for the development of new antibiotics, mainly due to their membraneperturbing mechanism of action that very rarely induces microbial resistance. However, bringing AMPs into the clinical field is hampered by some intrinsic limitations, encompassing low peptide bioavailability at the target site and high peptide susceptibility to proteolytic degradation. In this regard, nanotechnologies represent an innovative strategy to circumvent these issues. According to the literature, a large variety of nanoparticulate systems have been employed for drug-delivery, bioimaging, biosensors or nanoantibiotics. The possibility of conjugating different types of molecules, including AMPs, to these systems, allows the production of nanoformulations able to enhance the biological profile of the compound while reducing its cytotoxicity and prolonging its residence time. In this minireview, inorganic gold nanoparticles (NPs) and biodegradable polymeric NPs made of poly(lactide-coglycolide) are described with particular emphasis on examples of the conjugation of AMPs to them, to highlight the great potential of such nanoformulations as alternative antimicrobials.


Author(s):  
Maryam Aisyah Abdullah ◽  
Siti Munirah Mohd Faudzi ◽  
Nadiah Mad Nasir

Abstract:: Medicinal chemists have continuously shown interest in new curcuminoid derivatives, the diarylpentadienones, owing to their enhanced stability feature and easy preparation using a one-pot synthesis. Thus far, methods such as Claisen-Schmidt condensation and Julia-Kocienski olefination have been utilised for the synthesis of these compounds. Diarylpentadienones possess a high potential as a chemical source for designing and developing new and effective drugs for the treatment of diseases, including inflammation, cancer, and malaria. In brief, this review article focuses on the broad pharmacological applications and the summary of the structure-activity relationship of molecules which can be employed to further explore the structure of diarylpentadienone. The current methodological developments towards the synthesis of diarylpentadienones are also discussed.


2019 ◽  
Vol 19 (17) ◽  
pp. 1392-1406
Author(s):  
Suvarna G. Kini ◽  
Ekta Rathi ◽  
Avinash Kumar ◽  
Varadaraj Bhat

Diphenyl ethers (DPE) and its analogs have exhibited excellent potential for therapeutic and industrial applications. Since the 19th century, intensive research is perpetuating on the synthetic routes and biological properties of DPEs. Few well-known DPEs are Nimesulide, Fenclofenac, Triclosan, Sorafenib, MK-4965, and MK-1439 which have shown the potential of this moiety as a lead scaffold for different pharmacological properties. In this review, we recapitulate the diverse synthetic route of DPE moiety inclusive of merits and demerits over the classical synthetic route and how this moiety sparked an interest in researchers to discern the SAR (Structure Activity Relationship) for the development of diversified biological properties of DPEs such as antimicrobial, antifungal, antiinflammatory & antiviral activities.


2018 ◽  
Vol 18 (17) ◽  
pp. 1483-1493
Author(s):  
Ricardo Imbroisi Filho ◽  
Daniel T.G. Gonzaga ◽  
Thainá M. Demaria ◽  
João G.B. Leandro ◽  
Dora C.S. Costa ◽  
...  

Background: Cancer is a major cause of death worldwide, despite many different drugs available to treat the disease. This high mortality rate is largely due to the complexity of the disease, which results from several genetic and epigenetic changes. Therefore, researchers are constantly searching for novel drugs that can target different and multiple aspects of cancer. Experimental: After a screening, we selected one novel molecule, out of ninety-four triazole derivatives, that strongly affects the viability and proliferation of the human breast cancer cell line MCF-7, with minimal effects on non-cancer cells. The drug, named DAN94, induced a dose-dependent decrease in MCF-7 cells viability, with an IC50 of 3.2 ± 0.2 µM. Additionally, DAN94 interfered with mitochondria metabolism promoting reactive oxygen species production, triggering apoptosis and arresting the cancer cells on G1/G0 phase of cell cycle, inhibiting cell proliferation. These effects are not observed when the drug was tested in the non-cancer cell line MCF10A. Using a mouse model with xenograft tumor implants, the drug preventing tumor growth presented no toxicity for the animal and without altering biochemical markers of hepatic function. Results and Conclusion: The novel drug DAN94 is selective for cancer cells, targeting the mitochondrial metabolism, which culminates in the cancer cell death. In the end, DAN94 has been shown to be a promising drug for controlling breast cancer with minimal undesirable effects.


Sign in / Sign up

Export Citation Format

Share Document