Selection and paucity of phylogenetic signal challenge the utility of alpha-tubulin in reconstruction of evolutionary history of free-living litostomateans (Protista, Ciliophora)

2018 ◽  
Vol 127 ◽  
pp. 534-544 ◽  
Author(s):  
Ľubomír Rajter ◽  
Peter Vďačný
Science ◽  
2021 ◽  
Vol 373 (6556) ◽  
pp. 792-796 ◽  
Author(s):  
Paul K. Strother ◽  
Clinton Foster

Molecular time trees indicating that embryophytes originated around 500 million years ago (Ma) during the Cambrian are at odds with the record of fossil plants, which first appear in the mid-Silurian almost 80 million years later. This time gap has been attributed to a missing fossil plant record, but that attribution belies the case for fossil spores. Here, we describe a Tremadocian (Early Ordovician, about 480 Ma) assemblage with elements of both Cambrian and younger embryophyte spores that provides a new level of evolutionary continuity between embryophytes and their algal ancestors. This finding suggests that the molecular phylogenetic signal retains a latent evolutionary history of the acquisition of the embryophytic developmental genome, a history that perhaps began during Ediacaran-Cambrian time but was not completed until the mid-Silurian (about 430 Ma).


Author(s):  
Ryan Kyger ◽  
Agusto Luzuriaga-Neira ◽  
Thomas Layman ◽  
Tatiana Orli Milkewitz Sandberg ◽  
Devika Singh ◽  
...  

Abstract DNA cytosine methylation is central to many biological processes, including regulation of gene expression, cellular differentiation, and development. This DNA modification is conserved across animals, having been found in representatives of sponges, ctenophores, cnidarians, and bilaterians, and with very few known instances of secondary loss in animals. Myxozoans are a group of microscopic, obligate endoparasitic cnidarians that have lost many genes over the course of their evolution from free-living ancestors. Here, we investigated the evolution of the key enzymes involved in DNA cytosine methylation in 29 cnidarians and found that these enzymes were lost in an ancestor of Myxosporea (the most speciose class of Myxozoa). Additionally, using whole-genome bisulfite sequencing, we confirmed that the genomes of two distant species of myxosporeans, Ceratonova shasta and Henneguya salminicola, completely lack DNA cytosine methylation. Our results add a notable and novel taxonomic group, the Myxosporea, to the very short list of animal taxa lacking DNA cytosine methylation, further illuminating the complex evolutionary history of this epigenetic regulatory mechanism.


2018 ◽  
Author(s):  
Gang Li ◽  
Henrique V. Figueiro ◽  
Eduardo Eizirik ◽  
William J. Murphy

Current phylogenomic approaches implicitly assume that the predominant phylogenetic signal within a genome reflects the true evolutionary history of organisms, without assessing the confounding effects of gene flow that result in a mosaic of phylogenetic signals that interact with recombinational variation. Here we tested the validity of this assumption with a recombination-aware analysis of whole genome sequences from 27 species of the cat family. We found that the prevailing phylogenetic signal within the autosomes is not always representative of speciation history, due to ancient hybridization throughout felid evolution. Instead, phylogenetic signal was concentrated within large, conserved X-chromosome recombination deserts that exhibited recurrent patterns of strong genetic differentiation and selective sweeps across mammalian orders. By contrast, regions of high recombination were enriched for signatures of ancient gene flow, and these sequences inflated crown-lineage divergence times by ~40%. We conclude that standard phylogenomic approaches to infer the Tree of Life may be highly misleading without considering the genomic partitioning of phylogenetic signal relative to recombination rate, and its interplay with historical hybridization.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dayana E. Salas-Leiva ◽  
Eelco C. Tromer ◽  
Bruce A. Curtis ◽  
Jon Jerlström-Hultqvist ◽  
Martin Kolisko ◽  
...  

AbstractCells replicate and segregate their DNA with precision. Previous studies showed that these regulated cell-cycle processes were present in the last eukaryotic common ancestor and that their core molecular parts are conserved across eukaryotes. However, some metamonad parasites have secondarily lost components of the DNA processing and segregation apparatuses. To clarify the evolutionary history of these systems in these unusual eukaryotes, we generated a genome assembly for the free-living metamonad Carpediemonas membranifera and carried out a comparative genomics analysis. Here, we show that parasitic and free-living metamonads harbor an incomplete set of proteins for processing and segregating DNA. Unexpectedly, Carpediemonas species are further streamlined, lacking the origin recognition complex, Cdc6 and most structural kinetochore subunits. Carpediemonas species are thus the first known eukaryotes that appear to lack this suite of conserved complexes, suggesting that they likely rely on yet-to-be-discovered or alternative mechanisms to carry out these fundamental processes.


2015 ◽  
Vol 112 (19) ◽  
pp. 6158-6163 ◽  
Author(s):  
Jörg C. Frommlet ◽  
Maria L. Sousa ◽  
Artur Alves ◽  
Sandra I. Vieira ◽  
David J. Suggett ◽  
...  

Dinoflagellates of the genusSymbiodiniumare commonly recognized as invertebrate endosymbionts that are of central importance for the functioning of coral reef ecosystems. However, the endosymbiotic phase withinSymbiodiniumlife history is inherently tied to a more cryptic free-living (ex hospite) phase that remains largely unexplored. Here we show that free-livingSymbiodiniumspp. in culture commonly form calcifying bacterial–algal communities that produce aragonitic spherulites and encase the dinoflagellates as endolithic cells. This process is driven bySymbiodiniumphotosynthesis but occurs only in partnership with bacteria. Our findings not only place dinoflagellates on the map of microbial–algal organomineralization processes but also point toward an endolithic phase in theSymbiodiniumlife history, a phenomenon that may provide new perspectives on the biology and ecology ofSymbiodiniumspp. and the evolutionary history of the coral–dinoflagellate symbiosis.


Author(s):  
Yisong Li ◽  
Ying Huang

Sialic acids play essential roles in the physiology of humans and other metazoan animals, and microbial sialic acid catabolism (SAC) is one of the processes critical for pathogenesis. To date, microbial SAC is studied mainly in commensals and pathogens, while its distribution in free-living microbes and evolutionary pathway remain largely unexplored.


2018 ◽  
Vol 14 (10) ◽  
pp. 20180502 ◽  
Author(s):  
Manabu Sakamoto ◽  
Chris Venditti

Statistical non-independence of species’ biological traits is recognized in most traits under selection. Yet, whether or not the evolutionary rates of such biological traits are statistically non-independent remains to be tested. Here, we test the hypothesis that phenotypic evolutionary rates are non-independent, i.e. contain phylogenetic signal, using empirical rates of evolution in three separate traits: body mass in mammals, beak shape in birds and bite force in amniotes. Specifically, we test if evolutionary rates are phylogenetically interdependent. We find evidence for phylogenetic signal in evolutionary rates in all three case studies. While phylogenetic signal diminishes deeper in time, this is reflective of statistical power owing to small sample and effect sizes. When effect size is large, e.g. owing to the presence of fossil tips, we detect high phylogenetic signals even in deeper time slices. Thus, we recommend that rates be treated as being non-independent throughout the evolutionary history of the group of organisms under study, and any summaries or analyses of rates through time—including associations of rates with traits—need to account for the undesired effects of shared ancestry.


2017 ◽  
Author(s):  
Roman Sloutsky ◽  
Kristen M. Naegle

AbstractEvolutionary reconstruction algorithms produce models of the evolutionary history of proteins: the order of duplications and speciations that led to extant homologous proteins observed across species. Although they are regularly used to gain insight into protein function, these models are estimates of an unknowable truth according to the underlying assumptions inherent in each algorithm, its objective function, and the input sequences supplied for reconstruction. In practice, the generated models are highly sensitive to the sequence inputs. In this work, we asked whether we could identify stronger phylogenetic signal by capitalizing on the variance introduced by perturbing the input to evolutionary reconstruction to explore a rich space of possible models that could explain protein evolution. We subsampled from available protein orthologs, “same” proteins across multiple extant species, and produced an ensemble of topologies representing the duplication history which produced related proteins (paralogs) for simulated protein families and in a real protein family – the LacI transcription factor family. We found that two very important phenomena arise from this approach. First, the reproducibility of an all-sequence, single-alignment reconstruction, measured by comparing topologies inferred from 90% subsamples, directly correlates with the accuracy of that single-alignment reconstruction, producing a measurable value for something that has been traditionally unknowable. Second, if we take a large ensemble of trees inferred from 50% subsamples and cast the ensemble into a form that represents the distribution of pairwise leaf distances observed across the ensemble, then trees that capture the most frequently observed relationships are also the most accurate. We propose a new methodology, ASPEN, a meta-algorithm that finds and ranks the trees that are most consistent with observations across the ensemble. Top-ranked ASPEN trees are significantly more accurate than the single-alignment tree produced from all available sequences. Importantly, our findings suggest that the true tree is currently inaccessible for most real protein families. Instead, applications that rely on evolutionary models should integrate across many trees that are equally likely to represent the true evolutionary history of a protein family.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dario Karmeinski ◽  
Karen Meusemann ◽  
Jessica A. Goodheart ◽  
Michael Schroedl ◽  
Alexander Martynov ◽  
...  

Abstract Background The soft-bodied cladobranch sea slugs represent roughly half of the biodiversity of marine nudibranch molluscs on the planet. Despite their global distribution from shallow waters to the deep sea, from tropical into polar seas, and their important role in marine ecosystems and for humans (as targets for drug discovery), the evolutionary history of cladobranch sea slugs is not yet fully understood. Results To enlarge the current knowledge on the phylogenetic relationships, we generated new transcriptome data for 19 species of cladobranch sea slugs and two additional outgroup taxa (Berthella plumula and Polycera quadrilineata). We complemented our taxon sampling with previously published transcriptome data, resulting in a final data set covering 56 species from all but one accepted cladobranch superfamilies. We assembled all transcriptomes using six different assemblers, selecting those assemblies that provided the largest amount of potentially phylogenetically informative sites. Quality-driven compilation of data sets resulted in four different supermatrices: two with full coverage of genes per species (446 and 335 single-copy protein-coding genes, respectively) and two with a less stringent coverage (667 genes with 98.9% partition coverage and 1767 genes with 86% partition coverage, respectively). We used these supermatrices to infer statistically robust maximum-likelihood trees. All analyses, irrespective of the data set, indicate maximal statistical support for all major splits and phylogenetic relationships at the family level. Besides the questionable position of Noumeaella rubrofasciata, rendering the Facelinidae as polyphyletic, the only notable discordance between the inferred trees is the position of Embletonia pulchra. Extensive testing using Four-cluster Likelihood Mapping, Approximately Unbiased tests, and Quartet Scores revealed that its position is not due to any informative phylogenetic signal, but caused by confounding signal. Conclusions Our data matrices and the inferred trees can serve as a solid foundation for future work on the taxonomy and evolutionary history of Cladobranchia. The placement of E. pulchra, however, proves challenging, even with large data sets and various optimization strategies. Moreover, quartet mapping results show that confounding signal present in the data is sufficient to explain the inferred position of E. pulchra, again leaving its phylogenetic position as an enigma.


Sign in / Sign up

Export Citation Format

Share Document