scholarly journals Power spectrum and kurtosis separation method for multi-shaker non-Gaussian random vibration control

2022 ◽  
Vol 162 ◽  
pp. 108015
Author(s):  
Ronghui Zheng ◽  
Guoping Chen ◽  
Huaihai Chen
2020 ◽  
Vol 26 (17-18) ◽  
pp. 1463-1470 ◽  
Author(s):  
Ronghui Zheng ◽  
Huaihai Chen ◽  
Min Qin ◽  
Andrea Angeli ◽  
Dirk Vandepitte

This article investigates the influence of low damping ratios on the performance of the multi-exciter stationary non-Gaussian random vibration control system. The basic theory of the multi-exciter stationary non-Gaussian random vibration method is reviewed first, and then the influences of low damping ratios on multi-output spectra and kurtoses are analyzed. The low damping ratios cause an ill-conditioned problem which will make the drive spectral matrix solution inaccurate; thus, some spectral lines located at resonance peaks in the response spectra cannot be modified within the preset tolerances by the control algorithms. The regularization method is used to alleviate the calculation error. The output kurtoses are dependent not only on the characteristics of the system but also on the input signals. It is found that the kurtosis control will be intractable if the damping ratios are very low. A two-input two-output cantilever beam simulation example is described to illustrate the analysis results.


1999 ◽  
Vol 46 (2) ◽  
pp. 466-467 ◽  
Author(s):  
A.M. Karshenas ◽  
M.W. Dunnigan ◽  
B.W. Williams

2021 ◽  
Vol 34 (1) ◽  
pp. 350-363
Author(s):  
Ronghui ZHENG ◽  
Guoping CHEN ◽  
Huaihai CHEN

2020 ◽  
Vol 500 (2) ◽  
pp. 2532-2542
Author(s):  
Linda Blot ◽  
Pier-Stefano Corasaniti ◽  
Yann Rasera ◽  
Shankar Agarwal

ABSTRACT Future galaxy surveys will provide accurate measurements of the matter power spectrum across an unprecedented range of scales and redshifts. The analysis of these data will require one to accurately model the imprint of non-linearities of the matter density field. In particular, these induce a non-Gaussian contribution to the data covariance that needs to be properly taken into account to realize unbiased cosmological parameter inference analyses. Here, we study the cosmological dependence of the matter power spectrum covariance using a dedicated suite of N-body simulations, the Dark Energy Universe Simulation–Parallel Universe Runs (DEUS-PUR) Cosmo. These consist of 512 realizations for 10 different cosmologies where we vary the matter density Ωm, the amplitude of density fluctuations σ8, the reduced Hubble parameter h, and a constant dark energy equation of state w by approximately $10{{\ \rm per\ cent}}$. We use these data to evaluate the first and second derivatives of the power spectrum covariance with respect to a fiducial Λ-cold dark matter cosmology. We find that the variations can be as large as $150{{\ \rm per\ cent}}$ depending on the scale, redshift, and model parameter considered. By performing a Fisher matrix analysis we explore the impact of different choices in modelling the cosmological dependence of the covariance. Our results suggest that fixing the covariance to a fiducial cosmology can significantly affect the recovered parameter errors and that modelling the cosmological dependence of the variance while keeping the correlation coefficient fixed can alleviate the impact of this effect.


Author(s):  
Robin E Upham ◽  
Michael L Brown ◽  
Lee Whittaker

Abstract We investigate whether a Gaussian likelihood is sufficient to obtain accurate parameter constraints from a Euclid-like combined tomographic power spectrum analysis of weak lensing, galaxy clustering and their cross-correlation. Testing its performance on the full sky against the Wishart distribution, which is the exact likelihood under the assumption of Gaussian fields, we find that the Gaussian likelihood returns accurate parameter constraints. This accuracy is robust to the choices made in the likelihood analysis, including the choice of fiducial cosmology, the range of scales included, and the random noise level. We extend our results to the cut sky by evaluating the additional non-Gaussianity of the joint cut-sky likelihood in both its marginal distributions and dependence structure. We find that the cut-sky likelihood is more non-Gaussian than the full-sky likelihood, but at a level insufficient to introduce significant inaccuracy into parameter constraints obtained using the Gaussian likelihood. Our results should not be affected by the assumption of Gaussian fields, as this approximation only becomes inaccurate on small scales, which in turn corresponds to the limit in which any non-Gaussianity of the likelihood becomes negligible. We nevertheless compare against N-body weak lensing simulations and find no evidence of significant additional non-Gaussianity in the likelihood. Our results indicate that a Gaussian likelihood will be sufficient for robust parameter constraints with power spectra from Stage IV weak lensing surveys.


2013 ◽  
Vol 423-426 ◽  
pp. 1589-1593
Author(s):  
Jia Ning Zhu ◽  
Ya Zhou Xu ◽  
Guo Liang Bai ◽  
Rui Wen Li

The response of a large-size cooling tower with 250m high subjected to the seismic action are investigated by both random vibration theory and response spectrum method. Shell element is taken to model the tower body, and beam element is used for the circular foundation and supporting columns. The earthquake motion input is a colored filtered white noise model and mode superposition method is adopted to analyze the random response of the large-size cooling tower. The paper presents the power spectrum density functions (PDF) and standard deviation of the displacement of the top and characteristic node, and the analysis results indicate that the results of the stationary random vibration theory and the response spectrum method are the same order of magnitude. The power spectrum density function of the bottom node stress is obviously bigger than the one at the top and the throat, and the random response of meridonal stress is dominated at the top. In addition, the peak frequency position of the power spectrum density function is different from the corresponding stress.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Yu Jiang ◽  
Gun Jin Yun ◽  
Li Zhao ◽  
Junyong Tao

Novel accelerated random vibration fatigue test methodology and strategy are proposed, which can generate a design of the experimental test plan significantly reducing the test time and the sample size. Based on theoretical analysis and fatigue damage model, several groups of random vibration fatigue tests were designed and conducted with the aim of investigating effects of both Gaussian and non-Gaussian random excitation on the vibration fatigue. First, stress responses at a weak point of a notched specimen structure were measured under different base random excitations. According to the measured stress responses, the structural fatigue lives corresponding to the different vibrational excitations were predicted by using the WAFO simulation technique. Second, a couple of destructive vibration fatigue tests were carried out to validate the accuracy of the WAFO fatigue life prediction method. After applying the proposed experimental and numerical simulation methods, various factors that affect the vibration fatigue life of structures were systematically studied, including root mean squares of acceleration, power spectral density, power spectral bandwidth, and kurtosis. The feasibility of WAFO for non-Gaussian vibration fatigue life prediction and the use of non-Gaussian vibration excitation for accelerated fatigue testing were experimentally verified.


Sign in / Sign up

Export Citation Format

Share Document