An origami inspired quasi-zero stiffness vibration isolator using a novel truss-spring based stack Miura-ori structure

2022 ◽  
Vol 165 ◽  
pp. 108383
Author(s):  
Kan Ye ◽  
J.C. Ji
Keyword(s):  
Author(s):  
K. Ohi ◽  
M. Mizuno ◽  
T. Kasai ◽  
Y. Ohkura ◽  
K. Mizuno ◽  
...  

In recent years, with electron microscopes coming into wider use, their installation environments do not necessarily give their performance full play. Their environmental conditions include air-conditioners, magnetic fields, and vibrations. We report a jointly developed entirely new vibration isolator which is effective against the vibrations transmitted from the floor.Conventionally, large-sized vibration isolators which need the digging of a pit have been used. These vibration isolators, however, are large present problems of installation and maintenance because of their large-size.Thus, we intended to make a vibration isolator which1) eliminates the need for changing the installation room2) eliminates the need of maintenance and3) are compact in size and easily installable.


2020 ◽  
pp. 095745652097238
Author(s):  
Chun Cheng ◽  
Ran Ma ◽  
Yan Hu

Generalized geometric nonlinear damping based on the viscous damper with a non-negative velocity exponent is proposed to improve the isolation performance of a quasi-zero stiffness (QZS) vibration isolator in this paper. Firstly, the generalized geometric nonlinear damping characteristic is derived. Then, the amplitude-frequency responses of the QZS vibration isolator under force and base excitations are obtained, respectively, using the averaging method. Parametric analysis of the force and displacement transmissibility is conducted subsequently. At last, two phenomena are explained from the viewpoint of the equivalent damping ratio. The results show that decreasing the velocity exponent of the horizontal damper is beneficial to reduce the force transmissibility in the resonant region. For the case of base excitation, it is beneficial to select a smaller velocity exponent only when the nonlinear damping ratio is relatively large.


Author(s):  
R Stanway ◽  
R Firoozian ◽  
J E Mottershead

In this paper the authors present experimental confirmation of the feasibility of a new approach to the estimation of the four damping coefficients associated with a squeeze-film vibration isolator. The design and construction of the experimental facility is described in detail. A time-domain filtering algorithm is applied to process the displacement responses to single-frequency excitation and thus extract information on the linearized dynamics of the squeeze-film. The estimated coefficients are validated by comparing performance predictions with those obtained from spectrum analysis and from short-bearing theory. The significance of the results is discussed and suggestions are made for further work in this area.


1997 ◽  
Vol 119 (1) ◽  
pp. 52-59 ◽  
Author(s):  
M. J. Panza ◽  
D. P. McGuire ◽  
P. J. Jones

An integrated mathematical model for the dynamics, actuation, and control of an active fluid/elastomeric tuned vibration isolator in a two mass system is presented. The derivation is based on the application of physical principles for mechanics, fluid continuity, and electromagnetic circuits. Improvement of the passive isolator performance is obtained with a feedback scheme consisting of a frequency shaped notch compensator in series with integral control of output acceleration and combined with proportional control of the fluid pressure in the isolator. The control is applied via an electromagnetic actuator for excitation of the fluid in the track connecting the two pressure chambers of the isolator. Closed loop system equations are transformed to a nondimensional state space representation and a key dimensionless parameter for isolator-actuator interaction is defined. A numerical example is presented to show the effect of actuator parameter selection on system damping, the performance improvement of the active over the passive isolator, the robustness of the control scheme to parameter variation, and the electrical power requirements for the actuator.


2009 ◽  
Vol 15 (7) ◽  
pp. 1017-1026
Author(s):  
Nan-Chyuan Tsai ◽  
Chung-Yang Sue ◽  
Bing-Hong Liou

2007 ◽  
Vol 14 (5) ◽  
pp. 377-391 ◽  
Author(s):  
S. Asiri

This paper presents both theoretically and experimentally a new kind of vibration isolator called tunable mechanical filter which consists of four parallel hybrid periodic rods connected between two plates. The rods consist of an assembly of periodic cells, each cell being composed of a short rod and piezoelectric inserts. By actively controlling the piezoelectric elements, it is shown that the periodic rods can efficiently attenuate the propagation of vibration from the upper plate to the lower one within critical frequency bands and consequently minimize the effects of transmission of undesirable vibration and sound radiation. In such a filter, longitudinal waves can propagate from the vibration source in the upper plate to the lower one along the rods only within specific frequency bands called the “Pass Bands” and wave propagation is efficiently attenuated within other frequency bands called the “Stop Bands”. The spectral width of these bands can be tuned according to the nature of the external excitation. The theory governing the operation of this class of vibration isolator is presented and their tunable filtering characteristics are demonstrated experimentally as functions of their design parameters. The concept of this mechanical filter as presented can be employed in many applications to control the wave propagation and the force transmission of longitudinal vibrations both in the spectral and spatial domains in an attempt to stop/attenuate the propagation of undesirable disturbances.


Sign in / Sign up

Export Citation Format

Share Document