Modeling, bench test and ride analysis of a novel energy-harvesting hydraulically interconnected suspension system

2022 ◽  
Vol 166 ◽  
pp. 108456
Bonan Qin ◽  
Yuzhe Chen ◽  
Zhaoheng Chen ◽  
Lei Zuo
Jaychandar Muthu ◽  
Kanak Soundrapandian ◽  
Jyoti Mukherjee

For suspension components, bench testing for strength is mostly accomplished at component level. However, replicating loading and boundary conditions at the component level in order to simulate the suspension system environment may be difficult. Because of this, the component's bench test failure mode may not be similar to its real life failure mode in vehicle environment. A suspension system level bench test eliminates most of the discrepancies between simulated component level and real life vehicle level environments resulting in higher quality bench tests yielding realistic test results. Here, a suspension level bench test to estimate the strength of its trailing arm link is presented. A suspension system level nonlinear finite element model was built and analyzed using ABAQUS software. The strength loading was applied at the wheel end. The analysis results along with the hardware test correlations are presented. The reasons why a system level test is superior to a component level one are also highlighted.

Jacek Caban ◽  
Grzegorz Litak ◽  
Bartłomiej Ambrożkiewicz ◽  
Leszek Gardyński ◽  
Paweł Stączek ◽  

The automotive industry faces huge challenge in environmental protection by reducing fossil fuels and energy consumption by developing various practical solutions in energy harvesting. The current analysis is related to the diesel engine power supply system in a passenger off-road vehicle for application of the piezoelectric energy harvesting system. Experimental tests were carried out for the three constant rotational speed values - 800, 1000 and 1500 rpm. The results pertained to operational and simulation tests of available power supply options from the engine suspension system in the vehicle, e.g. to power sensors supervising the engine’s operation or other small electrical devices in the vehicle. The simulations of output voltage were conducted by means of a nonlinear model with a resonator coupled to a piezoelectric elastic beam deformed in the magnetic field to improve the band of frequency transducing kinetic mechanic energy into electric energy.

Vibration ◽  
2020 ◽  
Vol 3 (3) ◽  
pp. 162-173
Urvesh Kabariya ◽  
Sagil James

Suspension dampers are extremely critical for modern automobiles for absorbing vibrational energy while in operation. For years now, the viscous passive damper has been dominant. However, there is a constant need to improve and revolutionize the damping technology to adapt to modern road conditions and for better performance. Controlled shock absorbers capable of adapting to uneven road profiles are required to meet this challenge and enhance the passenger comfort level. Among the many types of modern damping solutions, magnetorheological (MR) dampers have gained prominence, considering their damping force control capability, fast adjustable response, and low energy consumption. Advancements in energy-harvesting technologies allow for the regeneration of a portion of energy dissipated in automotive dampers. While the amount of regenerated energy is often insufficient for regular automobiles, it could prove to be vital to support lightweight battery-operated vehicles. In battery-operated vehicles, this regenerated energy can be used for powering several secondary systems, including lighting, heating, air conditioning, and so on. This research focuses on developing a hybrid smart suspension system that combines the MR damping technology along with an electromagnetic induction (EMI)-based energy-harvesting system for applications in lightweight battery-operated vehicles. The research involves the extensive designing, numerical simulation, fabrication, and testing of the proposed smart suspension system. The development of the proposed damping system would help advance the harvesting of clean energy and enhance the performance and affordability of future battery-operated vehicles.

2018 ◽  
Vol 229 ◽  
pp. 672-699 ◽  
Mohamed A.A. Abdelkareem ◽  
Lin Xu ◽  
Mohamed Kamal Ahmed Ali ◽  
Ahmed Elagouz ◽  
Jia Mi ◽  

Ziheng Zhu ◽  
Lin Xu ◽  
Mohamed A. A. Abdelkareem ◽  
Junyi Zou ◽  
Jia Mi

Abstract With the recent energy crisis, the new energy harvesting technologies have become one of the hot spots in engineering academic research and industrial applications. By its wide range of application fields, vibration energy harvesting technologies have been gradually developed and utilized in which an efficient and stable harvester technology is one of the recent key problems. In order to improve energy harvesting efficiency and reduce energy loss caused by motor inertial commutation, many mechanical structures or hydraulic structures that convert reciprocating vibration energy into single direction rotation of motor are proposed. Although these methods can improve energy harvesting efficiency, they can have negative effects in some cases, especially in the case of vibration energy harvesting from human beings. This paper proposes a vibration harvesting mechanism with mechanical rectification filter function applied to backpack. The prototype model of the system was established in SolidWorks and imported into ADAMS. Thereafter, dynamic analyses of mechanical rectification filtering characteristics and meshing characteristics of one-way clutch were simulated in ADAMS. Based on ADAMS, parametric design analysis and its influence on the mechanical rectification characteristics were investigated. The simulation results were validated by bench test results. Simulation results is done by ADAMS and the results match well with bench test results.

Ruochen Wang ◽  
Xiangpeng Meng ◽  
Dehua Shi ◽  
Xiaoliang Zhang ◽  
Yuexia Chen ◽  

A vehicle suspension system with inerters is proposed and its dynamic model is established to analyse its dynamic performance. The structure of the suspension with inerters is also constructed and its form and structural parameters are optimized. Then the rack-and-pinion inerter and the bench test system of suspension are designed. Based on the simulation, bench test is conducted. It has shown that theoretical research is consistent with the test results. Moreover, the structure of the suspension with inerters is so simple, that it can be easily achieved. Consequently the passenger comfort is greatly enhanced and the comprehensive performance of the car has been coordinated. Therefore, simulated analysis and experimental tests in this paper can provide evidence for further research on suspension with inerters.

Jia Mi ◽  
Qiaofeng Li ◽  
Mingyi Liu ◽  
Xiaofan Li ◽  
Lei Zuo

Abstract Human beings are becoming more and more dependent on electronic devices, such as smart phones, smart watches, GPS, etc. This paper presents the design, modeling and testing of a novel suspended energy harvesting backpack using half-wave mechanical rectification. The proposed half-wave rectification mechanism can convert bidirectional linear vibration into unidirectional rotation with nonlinear inertia. Compared with full-wave mechanical rectification, the proposed half-wave rectification is designed only to convert the motion in one of the vibration directions while remaining idle in the other direction. Numerical simulation shows the proposed half-wave rectification based suspended energy harvesting backpack can obtain about two times of the average output power as the previous full-wave rectification design while also maintaining larger output power in the wideband frequency range. Bench test results indicate that the proposed half-wave rectification-based energy harvesting backpack can harvest 6.7 W (peak)/2.1 W (average) under 2 Hz and 6 mm excitation with a 31.8 kg payload, which is a significant improvement compared with 1.9 W(peak)/0.9 W (average) for the counterpart of full-wave rectification system. In addition, bench test results also validate the energy harvesting in wideband frequency range. Treadmill tests demonstrate an average power range of 1.2–11.0 W under walking speeds of 3.2–6.4 km/h with a 13.6 kg payload.

Sign in / Sign up

Export Citation Format

Share Document