scholarly journals Possibilities of Energy Harvesting from the Suspension System of the Internal Combustion Engine in a Vehicle

Author(s):  
Jacek Caban ◽  
Grzegorz Litak ◽  
Bartłomiej Ambrożkiewicz ◽  
Leszek Gardyński ◽  
Paweł Stączek ◽  
...  

The automotive industry faces huge challenge in environmental protection by reducing fossil fuels and energy consumption by developing various practical solutions in energy harvesting. The current analysis is related to the diesel engine power supply system in a passenger off-road vehicle for application of the piezoelectric energy harvesting system. Experimental tests were carried out for the three constant rotational speed values - 800, 1000 and 1500 rpm. The results pertained to operational and simulation tests of available power supply options from the engine suspension system in the vehicle, e.g. to power sensors supervising the engine’s operation or other small electrical devices in the vehicle. The simulations of output voltage were conducted by means of a nonlinear model with a resonator coupled to a piezoelectric elastic beam deformed in the magnetic field to improve the band of frequency transducing kinetic mechanic energy into electric energy.

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7364
Author(s):  
Yi-Ren Wang ◽  
Ming-Ching Chu

This research proposes an energy harvesting system that collects the downward airflow from a helicopter or a multi-axis unmanned rotary-wing aircraft and uses this wind force to drive the magnet to rotate, generating repulsive force, which causes the double elastic steel system to slap each other and vibrate periodically in order to generate more electricity than the traditional energy harvesting system. The design concept of the vibration mechanism in this study is to allow the elastic steel carrying the magnet to slap another elastic steel carrying the piezoelectric patch to form a set of double elastic steel vibration energy harvesting (DES VEH) systems. The theoretical DES VEH mechanism of this research is composed of a pair of cantilever beams, with magnets attached to the free end of one beam, and PZT attached to the other beam. This study analyzes the single beam system first. The MOMS method is applied to analyze the frequency response of this nonlinear system theoretically, then combines the piezoelectric patch and the magneto-electric coupling device with this nonlinear elastic beam to analyze the benefits of the system’s converted electrical energy. In the theoretical study of the DES VEH system, the slapping force between the two elastic beams was considered as a concentrated load on each of the beams. Furthermore, both SES and DES VEH systems are studied and correlated. Finally, the experimental data and theoretical results are compared to verify the feasibility and correctness of the theory. It is proven that this DES VEH system can not only obtain the electric energy from the traditional SES VEH system but also obtain the extra electric energy of the steel vibration subjected to the slapping force, which generates optimal power to the greatest extent.


2011 ◽  
Vol 55-57 ◽  
pp. 498-503
Author(s):  
Bin Zheng ◽  
Liang Ping Luo

When designing implantable biomedical MEMS devices, we must provide electric power source with long life and small size to drive the sensors and actuators work. Obviously, traditional battery is not a good choice because of its large size, limited lifetime and finite power storage. Living creatures all have non-electric energy sources, like mechanical energy from heart beat and pulse. Piezoelectric structure can convert mechanical energy to electric energy. In the same design condition, the more electric energy is generated, the better the piezoelectric structure design. This paper discusses the topology optimization method for the most efficient implantable piezoelectric energy harvesting device. Finally, a design example based on the proposed method is given and the result is discussed.


Author(s):  
H. Li ◽  
S. D. Hu ◽  
H. S. Tzou

Piezoelectric energy harvesting has experienced significant growth over the past few years. Various harvesting structures have been proposed to convert ambient vibration energies to electrical energy. However, these harvester’s base structures are mostly beams and some plates. Shells have great potential to harvest more energy. This study aims to evaluate a piezoelectric coupled conical shell based energy harvester system. Piezoelectric patches are laminated on the conical shell surface to convert vibration energy to electric energy. An open-circuit output voltage of the conical energy harvester is derived based on the thin-shell theory and the Donnel-Mushtari-Valsov theory. The open-circuit voltage and its derived energy consists of four components respectively resulting from the meridional and circular membrane strains, as well as the meridional and circular bending strains. Reducing the surface of the harvester to infinite small gives the spatial energy distribution on the shell surface. Then, the distributed modal energy harvesting characteristics of the proposed PVDF/conical shell harvester are evaluated in case studies. The results show that, for each mode with unit modal amplitude, the distribution depends on the mode shape, harvester location, and geometric parameters. The regions with high strain outputs yield higher modal energies. Accordingly, optimal locations for the PVDF harvester can be defined. Also, when modal amplitudes are specified, the overall energy of the conical shell harvester can be calculated.


2020 ◽  
Vol 2 (4) ◽  
pp. 196-208
Author(s):  
A. S. Markov ◽  
K. A. Kolganov

Introduction: the article deals with development and implementation of an autonomous, scalable and flexible-capacity micro-generation site representing a combination of various alternative sources of electric energy (up to 30 kW). The co-authors offer a solution for an autonomous micro-generation site: a prototype of a modular platform for a hybrid power plant (MPHP), which enables the use of solar and wind energies, capacitors, as well as an autonomous standby power supply unit having an internal combustion engine. The basic idea underlying the concept of a modular platform and the module combination method are substantiated. Power supply patterns that comprise MPHP are provided. Testing results, as well as the economic efficiency of a system operating in a decentralized energy supply environment are presented in the article.Methods: the study is based on the analysis of strengths, weaknesses and features of existing energy systems using alternative/autonomous sources of electric energy with a view to the extension of capabilities and capacity by means of connecting new generating sources.Findings and discussion: the results of development of an autonomous micro-generation site are presented; a prototype of a modular platform for a hybrid power plant (MPHP) is manufactured.Conclusion: the modular platform of a hybrid power plant enables to combine different types of electric energy sources and retain effective control over operating modes, thus improving the energy supply reliability and saving organic fuel consumed for the generation of 1 kWh of electricity.


2020 ◽  
Vol 10 (14) ◽  
pp. 4949
Author(s):  
Roberto Ianniello ◽  
Gabriele Di Blasio ◽  
Renato Marialto ◽  
Carlo Beatrice ◽  
Massimo Cardone

Technological and economic concerns correlated to fulfilling future emissions and CO2 standards require great research efforts to define an alternative solution for low emissions and highly efficient propulsion systems. Alternative fuel formulation could contribute to this aim. Liquefied petroleum gas (LPG) with lower carbon content than other fossil fuels and which is easily vaporized at ambient conditions has the advantage of lowering CO2 emissions and optimizing the combustion process. Liquefied petroleum gas characteristics and availability makes the fuel a promising alternative for internal combustion engines. The possible combination of using it in high-efficiency compression ignition engines makes it worth analyzing the innovative method of using LPG as a blend component in diesel. Few relevant studies are detectable in literature in this regard. In this study, two blends containing diesel and LPG, in volume ratios 20/80 and 35/65, respectively, were formulated and utilized. Their effects on combustion and emissions performance were assessed by performing proper experimental tests on a modern light-duty single-cylinder engine test rig. Reference operating points at conventional engine calibration settings were examined. A specific exhaust gas recirculation (EGR) parametrization was performed evaluating the LPG blends’ potential in reducing the smoke emissions at standard engine-out NOx levels. The results confirm excellent NOx-smoke trade-off improvements with smoke reductions up to 95% at similar NOx and efficiency. Unburnt emissions slightly increase, and to acceptable levels. Improvements, in terms of indicated specific fuel consumption (ISFC), are detected in the range of 1–3%, as well as the CO2 decrease proportionally to the mixing ratio.


2015 ◽  
Vol 6 (6) ◽  
pp. 676-681
Author(s):  
Andrius Čeponis ◽  
Dalius Mažeika

The article gives an overview of the problems and solutions related to energy harvesting systems used for power supply of low power electronics systems. Power density is the main parameter describing the efficiency of energy harvesting systems. Piezoelectric energy harvesting systems demonstrate a high value of power density, and therefore the article presents an overview of piezoelectric energy harvesting systems and their components. Also, a summary of the terms that affect the efficiency of piezoelectric energy harvesting systems has been presented. Straipsnyje apžvelgiamos problemos ir sprendimai, susiję su elektrinės energijos tiekimu mažos galios elektronikos sistemoms, taikant energijos surinkimo iš aplinkos technologijas. Vienas iš pagrindinių energijos surinkimo sistemas apibūdinančių parametrų yra galios tankis. Pjezoelektrinė energijos surinkimo technologija pasižymi vienu iš didžiausių galios tankiu, todėl straipsnyje išsamiai nagrinėjami pjezoelektriniai kinetinės energijos keitikliai, apžvelgiamos keitiklių konstrukcijos, jų sudedamosios dalys, išskiriamos technologinės sąlygos, darančios įtaką keitiklių efektyvumui.


2013 ◽  
Vol 361-363 ◽  
pp. 263-266
Author(s):  
Bin Guan

The power supply of large number of sensors in the Internet of Things is the bottleneck technology of intelligent building. Piezoelectric energy harvesting is introduced as it is a perfect way to solve the problem. The vibration energies in intelligent building are analyzed and concluded with two important common characters. The five difficulties for the application of piezoelectric energy harvesting technology in intelligent building are introduced and solved. The module topology of energy harvester for sensor net in intelligent building application is presented.


2020 ◽  
Vol 2020 ◽  
pp. 1-32
Author(s):  
D. W. Wang ◽  
M. X. Liu ◽  
W. J. Qian ◽  
X. Wu ◽  
Q. Ma ◽  
...  

In this work, piezoelectric energy harvesting performance via friction-induced vibration is investigated numerically. A one-degree-of-freedom friction system with a piezoelectric element is proposed, to study the piezoelectric energy harvesting via friction-induced stick-slip vibration. Subsequently, a two-degree-of-freedom friction system with two piezoelectric elements is proposed, to investigate the piezoelectric energy harvesting via model coupling vibration. Results show that regardless of the friction systems, it is feasible to convert friction-induced vibration energy to electrical energy when the friction system is operating in the unstable vibration region. Parametrical analysis indicates that for the one-degree-of-freedom friction system, when the normal load increases from 5 N to 30 N, the stick-slip motion becomes more intense, and the friction system will generate more electric energy. While for the two-degree-of-freedom friction system, with the normal load increase from 20 N to 120 N, there is a critical normal load value for the generation of the strongest vibration and the highest voltage output. When the velocity of the belt increases from 0.5 m/s to 2 m/s, the amplitudes of vibration and output voltage become larger. While with the velocity further increasing, the stick-slip motion and generated electric energy disappear. For both friction systems, the external electric resistance has no effect on the dynamic behaviour of the friction system; however, it can modify the output voltage amplitudes within limits. It is also found that when the force factor of piezoelectric element increases from 3.1 × 10−5 N/V to 3.1 × 10−3 N/V, the vibration and harvested energy gradually increase. When the force factor further increases to 3.1 × 10−2 N/V, the vibration reduces drastically and the corresponding output voltages reduce significantly, which proves that a piezoelectric element with an appropriated force factor can give the highest harvested energy and conversion efficiency.


Author(s):  
Arata Masuda ◽  
Yasuhiro Hiraki ◽  
Naoto Ikeda ◽  
Akira Sone

In this study, a design of an energy harvesting damper for low-frequency applications, such as energy harvesting from long period infrastructures, tanks and pipings, and maritime and offshore structures, is presented. In this design, the low-frequency relative motion of the damper is transformed into a high-frequency motion of a piezoelectric cantilever beam by a mechanical switching mechanism, referred to as “plucking” mechanism that couples and decouples the cantilever to the damper rod so that the input energy into the damper is converted to electric energy with high efficiency. In this paper, the energy harvesting efficiency is theoretically calculated for the harvesters with and without plucking mechanism and the optimized maximum performance is derived. Then the electrical switching circuit for the enhancement of the electromechanical conversion efficiency, referred to as “SSHI” interface is introduced. Numerical case studies suggest that the harvester with an ideally implemented parallel SSHI circuit can retrieve over 70 % energy of the maximum mechanical work input on the damper rod.


Sign in / Sign up

Export Citation Format

Share Document