The impact of climate changes during the Holocene on vegetation in northern French Guiana

2010 ◽  
Vol 73 (2) ◽  
pp. 220-225 ◽  
Author(s):  
Vincent Freycon ◽  
Marion Krencker ◽  
Dominique Schwartz ◽  
Robert Nasi ◽  
Damien Bonal

The impact of climatic changes that occurred during the last glacial maximum and the Holocene on vegetation changes in the Amazon Basin and the Guiana Shield are still widely debated. The aim of our study was to investigate whether major changes in vegetation (i.e. transitions between rainforests and C4 savannas) occurred in northern French Guiana during the Holocene. We measured variations in the ä13C of soil organic matter at eight sites now occupied by forest or savannah. The forest sites were selected to cover two regions (forest refugia and peneplains) which are thought to have experienced different intensities of disturbance during the latest Pleistocene and the Holocene. We found that none of the forest sites underwent major disturbances during the Holocene, i.e. they were not replaced by C4 savannahs or C4 forest savannahs for long periods. Our results thus suggest that tropical rainforests in northern French Guiana were resilient to drier climatic conditions during the Holocene. Nevertheless, geographical and vertical variations in the 13C of SOM were compatible with minor changes in vegetation, variations in soil processes or in soil physical properties.

2010 ◽  
Vol 58 (spe1) ◽  
pp. 31-41 ◽  
Author(s):  
Renata Hanae Nagai ◽  
Silvia Helena de Mello e Sousa ◽  
Rafael André Lourenço ◽  
Márcia Caruso Bícego ◽  
Michel Michaelovitch de Mahiques

Changes in the Brazilian continental margins oceanic productivity and circulation over the last 27,000 years were reconstructed based on sedimentological and microfaunal analyses. Our results suggest that oceanic paleoproductivity and the supply of terrigenous sediments to the Brazilian continental margin were higher during the Last Glacial Maximum (LGM) than during the Holocene. These changes may have been primarily influenced by significant sea level fluctuations that have occurred since the late Pleistocene. During the LGM, the lower sea level, higher productivity and lower sea-surface paleotemperatures may have been the result of the offshore displacement of the main flow of the Brazil Current. However, during the Holocene, the warm waters of the Brazil Current were displaced toward the coast. This displacement contributed to the increase in water temperature and prevented an increase in oceanic productivity. The decrease in terrigenous supply since the LGM could be related to the increase of the extension of the continental shelf and/or drier climatic conditions.


2016 ◽  
Vol 56 (4) ◽  
pp. 533-544 ◽  
Author(s):  
N. V. Vakulenko ◽  
V. M. Kotlyakov ◽  
F. Parrenin ◽  
D. M. Sonechkin

A concept of the anthropogenic origin of the current global climate warming assumes that growth of concentration of the atmospheric carbon dioxide and other greenhouse gases is of great concern in this process. However, all earlier performed analyses of the Antarctic ice cores, covering the time interval of several glacial cycles for about 1 000 000 years, have demonstrated that the carbon dioxide concentration changes had a certain lag relative to the air temperature changes by several hundred years during every beginning of the glacial terminations as well as at endings of interglacials. In contrast to these findings, a recently published careful analysis of Antarctic ice cores (Parrenin et al., 2013) had shown that both, the carbon dioxide concentration and global temperature, varied almost synchronously during the transition from the last glacial maximum to the Holocene. To resolve this dilemma, a special technique for analysis of the paleoclimatic time series, based on the wavelets, had been developed and applied to the same carbon dioxide concentration and temperature time series which were used in the above paper of Parrenin et al., 2013. Specifically, a stack of the Antarctic δ18O time series (designated as ATS) and the deuterium Dome C – EPICA ones (dD) were compared to one another in order to: firstly, to quantitatively estimate differences between time scales of these series; and, secondly, to clear up the lead–lag relationships between different scales variations within these time series. It was found that accuracy of the mutual ATS and dD time series dating lay within the range of 80–160 years. Perhaps, the mutual dating of the temperature and carbon dioxide concentration series was even worse due to the assumed displacement of air bubbles within the ice. It made us to limit our analysis by the time scales of approximately from 800 to 6000 years. But it should be taken into account that any air bubble movement changes the time scale of the carbon dioxide series as a whole. Therefore, if a difference between variations in any temperature and the carbon dioxide time series is found to be longer than 80–160 years, and if these variations are timescale‑dependent, it means that the bubble displacements are not essential, and so these advancing and delays are characteristic of the time series being compared. Our wavelet‑based comparative and different‑scale analysis confirms that the relationships between the carbon dioxide concentration and temperature variations were essentially timescale‑dependent during the transition from the last glacial maximum to the Holocene. The carbon dioxide concentration variations were ahead of the temperature ones during transition from the glacial maximum to the Boelling – Alleroud warming as well as from the Young Drias cooling to the Holocene optimum. However, the temperature variations were ahead during the transition from the Boelling – Alleroud warming to the Young Drias cooling and during the transition from the Holocene optimum to the present‑day climate.


1995 ◽  
Vol 21 ◽  
pp. 343-347 ◽  
Author(s):  
G. Ramstein ◽  
S. Joussaume

For the Last Glacial Maximum, (LGM; 21 000 BP), simulations using atmospheric general-circulation models (AGCMs) are very sensitive to the prescribed boundary conditions. Most of the recent numerical experiments have used the CLIMAP (1981) data set for ice-sheet topography, sea-ice extent and sea surface temperatures (SSTs). To demonstrate the impact of ice-sheet reconstruction on the LGM climate, we performed two simulations: one using CLIMAP (1981) ice-sheet topography, the other using the new reconstruction provided by Peltier. We show that, although the geographical structure of the annually averaged temperature is not modified, there are important seasonal and regional impacts on the temperature distribution. In a second step, to analyze the effects of cooler SSTs and sea-ice extent, we performed a simulation using CLIMAP (1981) for the ice-sheet topography, but with present SSTs. We find that the cooling due to ice sheets for the LGM climate is one-third of the global annually averaged cooling, and dial the southward shift of the North Atlantic low in winter is not due to sea-ice extent, but is an orographic effect due to the Laurenride ice sheet. This set of sensitivity experiments allows us also to discriminate between thermal and orographic forcings and to show the impact of the ice-sheet topography and cooler SSTs on the pattern of planetary waves during the LGM climate.


2009 ◽  
Vol 8 (2) ◽  
pp. 81-94 ◽  
Author(s):  
Luc Arnold ◽  
François-Marie Bréon ◽  
Simon Brewer

AbstractThe so-called vegetation red-edge (VRE), a sharp increase in the reflectance around 700 nm, is a characteristic of vegetation spectra, and can therefore be used as a biomarker if it can be detected in an unresolved extrasolar Earth-like planet integrated reflectance spectrum. Here, we investigate the potential for the detection of vegetation spectra during the last Quaternary climatic extrema, the Last Glacial Maximum (LGM) and the Holocene optimum, for which past climatic simulations have been made. By testing the VRE detectability during these extrema, when Earth's climate and biomes maps were different from today, we are able to test the vegetation detectability on a terrestrial planet different from our modern Earth. Data from the Biome3.5 model have been associated to visible Global Ozone Monitoring Experiment (GOME) spectra for each biome and cloud cover to derive Earth's integrated spectra for given Earth phases and observer positions. The VRE is then measured. Results show that the vegetation remains detectable during the last climatic extrema. Compared to the current Earth, the Holocene optimum, with a greener Sahara, slightly increases the mean VRE on one hand, while on the other hand, the large ice cap over the northern hemisphere during the LGM decreases vegetation detectability. We finally discuss the detectability of the VRE in the context of recently proposed space missions.


1999 ◽  
Vol 29 ◽  
pp. 225-230 ◽  
Author(s):  
M. Meneghel ◽  
A. Bondesan ◽  
M. C. Salvatore ◽  
G. Orombelli

AbstractThe morphology of the Lichen Hills in the upper section of Rennick Glacier, Victoria Land, Antarctica, is summarised as follows: (a) a top surface on the volcanic rocks with scattered erratic blocks; (b) an exhumed Kukri Peneplain, sculptured with roches moutonnees with striae and crescentic gouges on which lie moraines and patches of drift of mainly volcanic rocks; (c) a granitic bedrock eroded by glaciers into sharp peaks and cirques on top of which there is a glacial drift attributable to ancient blue-ice areas higher than those observed at present and which may be correlated with the Terra Nova drift (Late Wisconsin); (d) various Holocene ice-cored moraines that are pushed to the lee side of the nunataks arid are often banded in strips of different lithology. The bands of the Holocene moraines are related to the rock complexes that became exposed from the ice during the lowering of the surface of the glacier Analysis of the lithology and pattern of the supraglacial debris, as well as of the blue-ice areas, allows us to construct a depositional model for the moraines, and to relate the glacial drift to blue-ice areas existing since the Last Glacial Maximum (LGM).The proposed model shows the different stages of recession of upper Rennick Glacier that are also valid for similar situations observed in northern Victoria Land. A surface lowering of upper Rennick Glacier of several hundred metres shows that significant changes have occurred at the Pacific edge of the East Antarctic ice sheet since the LGM.


Sign in / Sign up

Export Citation Format

Share Document