The DeKalb mounds of northeastern Illinois as archives of deglacial history and postglacial environments

2010 ◽  
Vol 74 (1) ◽  
pp. 82-90 ◽  
Author(s):  
B. Brandon Curry ◽  
Michael E. Konen ◽  
Timothy H. Larson ◽  
Catherine H. Yansa ◽  
Keith C. Hackley ◽  
...  

AbstractThe “type” DeKalb mounds of northeastern Illinois, USA (42.0°N, −88.7°W), are formed of basal sand and gravel overlain by rhythmically bedded fines, and weathered sand and gravel. Generally from 2 to 7 m thick, the fines include abundant fossils of ostracodes and uncommon leaves and stems of tundra plants. Rare chironomid head capsules, pillclam shells, and aquatic plant macrofossils also have been observed.Radiocarbon ages on the tundra plant fossils from the “type” region range from 20,420 to 18,560 cal yr BP. Comparison of radiocarbon ages of terrestrial plants from type area ice-walled lake plains and adjacent kettle basins indicate that the topographic inversion to ice-free conditions occurred from 18,560 and 16,650 cal yr BP. Outside the “type” area, the oldest reliable age of tundra plant fossils in DeKalb mound sediment is 21,680 cal yr BP; the mound occurs on the northern arm of the Ransom Moraine (−88.5436°W, 41.5028°N). The youngest age, 16,250 cal yr BP, is associated with a mound on the Deerfield Moraine (−87.9102°W, 42.4260°N) located about 9 km east of Lake Michigan. The chronology of individual successions indicates the lakes persisted on the periglacial landscape for about 300 to 1500 yr.

2020 ◽  
Vol 57 (2) ◽  
pp. 292-305
Author(s):  
Catherine H. Yansa ◽  
Albert E. Fulton ◽  
Randall J. Schaetzl ◽  
Jennifer M. Kettle ◽  
Alan F. Arbogast

We report on pollen, plant macrofossils, and associated lithostratigraphy of a sediment core extracted from the base of Silver Lake, a kettle lake in northern Lower Michigan, USA, which reveal a complex deglacial scenario for ice block melting and lake formation, and subsequent plant colonization. Complementary multivariate statistical and squared chord distance analyses of the pollen data support these interpretations. The basal radiocarbon age from the core (17 540 cal years BP) is rejected as being anomalously old, based on biostratigraphic anomalies in the core and the date’s incongruity with respect to the accepted regional deglaciation chronology. We reason that this erroneous age estimate resulted from the redeposition of middle-Wisconsin-age fossils by the ice sheet, mixed with the remains of plants that existed as the kettle lake formed at ca. 10 940 cal years BP by ice block ablation. Thereafter, the kettle lake became a reliable repository of Holocene-age fossils, documenting a mature boreal forest that existed until 10 640 cal years BP, followed by a pine-dominated mixed forest, an early variant of the mixed conifer–hardwood forest that persists to the present day. Our study demonstrates that researchers investigating kettle lakes, a common depositional archive for plant fossils in deglaciated landscapes, should exercise caution in interpreting the basal (Late Pleistocene/early Holocene-age) part of lake sediment cores.


Radiocarbon ◽  
1986 ◽  
Vol 28 (2A) ◽  
pp. 411-416 ◽  
Author(s):  
Michael Andree ◽  
Hans Oeschger ◽  
Ulrich Siegenthaler ◽  
Trudi Riesen ◽  
Markus Moell ◽  
...  

Macrofossils of terrestrial plants have been picked from a sediment core taken in Lake Lobsigen, a small lake on the Western Swiss Plateau. The sediments were previously analyzed for pollen composition, plant and animal macrofossils, and stable isotopes. Plant macrofossils were selected near pollen zone boundaries in Late Glacial and early Postglacial sediment for 14C dating by AMS. In the same lake carbonate and gyttja (aquatic plant) samples were dated by decay counting. The dates on terrestrial material are generally younger than those on carbonate and gyttja, ie, material reflecting the 14C/C ratio of dissolved bicarbonate in lake water. This is probably due to a contribution of dissolved limestone carbonate and thus a somewhat reduced 14C/C ratio in the lake's water (hard water effect).


1995 ◽  
Vol 44 (2) ◽  
pp. 181-189 ◽  
Author(s):  
John Lichter

AbstractA sequence of northern Lake Michigan beach ridges records lake-level fluctuations that are probably related to changes in late Holocene climate. Historically, episodes of falling and low lake level associated with regional drought led to the formation of dune-capped beach ridges. The timing of prehistoric ridge formation, estimated by radiocarbon dating of plant macrofossils from early-successional dune species, shows that return periods of inferred drought, averaged for time intervals of 100 to 480 yr, ranged between 17 and 135 yr per drought during the last 2400 yr. In five of ten of these time intervals, the average return period ranged between 17 and 22 yr per drought. These intervals of frequent ridge formation and drought were associated with the development of parabolic dunes, which is indicative of high lake level and moist climate. This seeming paradox suggests that unusually moist decades alternated with unusually dry decades during these time intervals. Regional water balance probably varied less during the time intervals when ridges formed less often and the lake produced no evidence of high level.


1975 ◽  
Vol 5 (1) ◽  
pp. 49-87 ◽  
Author(s):  
P.F. Karrow ◽  
T.W. Anderson ◽  
A.H. Clarke ◽  
L.D. Delorme ◽  
M.R. Sreenivasa

AbstractMolluscs, ostracodes, diatoms, pollen, plant macrofossils, peat, and wood have been found in glacial Lake Algonquin sediments, and estuarine-alluvial sediments of the same age, in southern Ontario. Molluscs and ostracodes are particularly abundant and widespread. Pollen analysis of Lake Algonquin sediments, bogs on the Algonquin terrace, and upland bogs above the Algonquin terrace, indicate that Lake Algonquin was still in existence at the time of the spruce-pine pollen transition, previously dated at an average of 10,600 yr BP at a number of sites in Michigan, Ohio, and southern Ontario. Wood in estuarine-alluvial sediments graded to the Algonquin level is of similar radiocarbon age. Evidence from several sites in the eastern Great Lakes area suggests the presence of a preceding low-water stage (Kirkfield outlet stage); drowned and alluviated valleys and fining-upward sediment sequences have been identified in this study as further supporting evidence. Lake Algonquin drained from the southern sites by isostatic tilting and eventual opening of the “North Bay outlet” some time shortly after 10,400 yr BP.Our radiocarbon dates suggest the low-water stage has an age of about 11,000 yr BP, and that Lake Algonquin drained 10,000–15,000 y. a. Dates previously published for the Lake Michigan basin are generally too young in comparison with ours, and dates on the Champlain Sea are generally too old. More critical evaluation of all dating results is desirable.From fossil remains we suggest a rapidly expanding fauna in the waters of Lake Algonquin. The spruce pollen period was a time of rapid faunal and floral migration, when the ice front was retreating from Kirkfield to North Bay, Ontario. Diversity of some species and fossil numbers increased substantially at the transition from spruce to pine just before Lake Algonquin drained.


EDIS ◽  
1969 ◽  
Vol 2005 (2) ◽  
Author(s):  
Eva C. Worden ◽  
David L. Sutton

Water gardening is increasing in popularity in ornamental landscapes across the country. Ornamental aquatic plants can be grown in small ponds and in containers on the patio or in the yard. Many water-tight containers of many sizes and shapes are available for displaying ornamental aquatic plants. Water gardens provide additional, attractive features to landscapes not available with terrestrial plants. An aquatic plant palette of considerable variety is available for water gardens in Florida (Table 1). The abundance of sunshine and warm temperatures provides ideal growing conditions for many aquatic plant species. This document is ENH988, one of a series of the Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Original publication date February 2005. 


1996 ◽  
Vol 46 (3) ◽  
pp. 251-259 ◽  
Author(s):  
Louis J. Maher ◽  
David M. Mickelson

A new and significant site of organic silty sand has been found beneath the Valders till at Valders Quarry in northeastern Wisconsin. This is now the earliest known late-glacial site associated with red till ice advances in the western Great Lakes area. Leaves of terrestrial plants washed into a small depression provide a date of 12,965 ± 200 yr B.P. (WIS-2293), which is significantly older than the Two Creeks Forest Bed (ca. 11,800 yr B.P.). Percentage and concentration pollen diagrams suggest that the site was open and distant from a closed Picea forest. No wood or Picea needles have been found. This date is statistically indistinguishable from 12,550 ± 233 yr B.P., the mean of three dates for the end of inorganic varve sedimentation at Devils Lake, 160 km southwest at the terminus of the Green Bay Lobe. Assuming that the Green Bay lobe vacated its outermost moraine in the interval from 13,000 to 12,500 yr B.P., only a short time was available for retreat of the ice margin over 350 km, drainage of red sediment from Lake Superior into the Lake Michigan basin, readvance of over 250 km, retreat of at least 80 km, and advance to this site. The time for these events appears to have been too short to resolve by current radiocarbon technique. This extremely rapid collapse of the Green Bay lobe has a calibrated age of about 15,000 cal yr B.P., about that of the dramatic warming seen in the Greenland ice cores.


2010 ◽  
Vol 29 (17-18) ◽  
pp. 2161-2172 ◽  
Author(s):  
Ulrike Herzschuh ◽  
Steffen Mischke ◽  
Hanno Meyer ◽  
Birgit Plessen ◽  
Chengjun Zhang

1981 ◽  
Vol 59 (6) ◽  
pp. 1061-1068 ◽  
Author(s):  
Dominique Davidson ◽  
Jean-Pierre Simon

Eleven ecotypes of Spirodela polyrhiza (L.) Schleid., an aquatic plant possessing an extensive geographic distribution, were studied to detect adaptive and acclimatory metabolic changes through a study of the thermostability and activation energy of malate dehydrogenase. Colonies were grown under controlled conditions with temperature (18, 23, and 28 °C) as the only variable. Thermostability is found to be affected by experimental temperatures (acclimation) but not by origin temperatures; there is genetic differentiation but related to some other environmental conditions than average temperature at the site of origin. Activation energy is unaffected by experimental temperatures or origin. It is suggested that, as S. polyrhiza naturally grows in bodies of water, it is less exposed to temperature variations than terrestrial plants, but is more affected by other physicochemical environmental factors; its main metabolic regulatory systems do not appear to be associated with thermal controls.


1998 ◽  
Vol 49 (2) ◽  
pp. 208-221 ◽  
Author(s):  
Louis J. Maher ◽  
Norton G. Miller ◽  
Richard G. Baker ◽  
B.Brandon Curry ◽  
David M. Mickelson

Previously undescribed pollen, plant macrofossils, molluscs, and ostracodes were recovered from a 2.5-m-thick glaciolacustrine unit of silty sand and clay at Valders, Wisconsin. The interstadial sediment was deposited about 12,200 14C yr B.P. after retreat of the Green Bay lobe that deposited diamicton of the Horicon Formation, and before advance of the Lake Michigan lobe that deposited the red-brown diamicton of the Valders Member of the Kewaunee Formation. Fluctuations of abundance of Candona subtriangulata, Cytherissa lacustris, and three other species define four ostracode biozones in the lower 1.7 m, suggesting an open lake environment that oscillated in depth and proximity to glacial ice. Pollen is dominated by Picea and Artemisia, but the low percentages of many other types of long-distance origin suggest that the terrestrial vegetation was open and far from the forest border. The upper part of the sediment, a massive sand deposited in either a shallow pond or a sluggish stream, contains a local concentration of plant macrofossils. The interpretation of a cold open environment is supported by the plant macrofossils of more than 20 species, dominated by those of open mineral soils ( Arenaria rubella, Cerastium alpinum type, Silene acaulis, Sibbaldia procumbens, Dryas integrifolia, Vaccinium uliginosum var. alpinum, Armeria maritima, etc.) that in North America occur largely in the tundra and open tundra–forest ecotone of northern Canada. Ice-wedge casts occur in the sand.


Sign in / Sign up

Export Citation Format

Share Document