scholarly journals Late Quaternary lake-level changes of Lake El'gygytgyn, NE Siberia

2011 ◽  
Vol 76 (3) ◽  
pp. 441-451 ◽  
Author(s):  
Olaf Juschus ◽  
Maksim Pavlov ◽  
Georg Schwamborn ◽  
Frank Preusser ◽  
Grigory Fedorov ◽  
...  

AbstractLake El'gygytgyn is situated in a 3.6 Ma old impact crater in northeastern Siberia. Presented here is a reconstruction of the Quaternary lake-level history as derived from sediment cores from the southern lake shelf. There, a cliff-like bench 10 m below the modern water level has been investigated. Deep-water sediments on the shelf indicate high lake levels during a warm Mid-Pleistocene period. One period with low lake level prior to Marine Oxygen Isotope Stage (MIS) 3 has been identified, followed by a period of high lake level (10 m above present). In the course of MIS 2 the lake level dropped to − 10 m. At the end of MIS 2 the bench was formed and coarse beach sedimentation occurred. Subsequently, the lake level rose rapidly to the Holocene level. Changes in water level are likely linked to climate variability. During relatively temperate periods the lake becomes free of ice in summer. Strong wave actions transport sediment parallel to the coast and towards the outlet, where the material tends to accumulate, resulting in lake level rise. During cold periods the perennial lake ice cover hampers any wave activity and pebble-transport, keeping the outlet open and causing the lake level to drop.

2013 ◽  
Vol 9 (3) ◽  
pp. 1253-1269 ◽  
Author(s):  
M. Nolan

Abstract. Analysis of the 3.6 Ma, 318 m long sediment core from Lake El'gygytgyn suggests that the lake was covered by ice for millennia at a time for much of its history and therefore this paper uses a suite of existing, simple, empirical degree-day models of lake-ice growth and decay to place quantitative constraints on air temperatures needed to maintain a permanent ice cover on the lake. We also provide an overview of the modern climatological and physical processes that relate to lake-ice growth and decay as a basis for evaluating past climate and environmental conditions. Our modeling results indicate that modern annual mean air temperature would only have to be reduced by 3.3 °C ± 0.9 °C to initiate a multiyear ice cover and a temperature reduction of at least 5.5 °C ± 1.0 °C is likely needed to completely eliminate direct air–water exchange of oxygen, conditions that have been inferred at Lake El'gygytgyn from the analysis of sediment cores. Once formed, a temperature reduction of only 1–3 °C relative to modern may be all that is required to maintain multiyear ice. We also found that formation of multiyear ice covers requires that positive degree days are reduced by about half the modern mean, from about +608 to +322. A multiyear ice cover can persist even with summer temperatures sufficient for a two-month long thawing period, including a month above +4 °C. Thus, it is likely that many summer biological processes and some lake-water warming and mixing may still occur beneath multiyear ice-covers even if air–water exchange of oxygen is severely restricted.


2001 ◽  
Vol 56 (3) ◽  
pp. 401-410 ◽  
Author(s):  
Bryan Shuman ◽  
Jennifer Bravo ◽  
Jonathan Kaye ◽  
Jason A. Lynch ◽  
Paige Newby ◽  
...  

AbstractSediment cores collected along a transect in Crooked Pond, southeastern Massachusetts, provide evidence of water-level changes between 15,000 cal yr B.P. and present. The extent of fine-grained, detrital, organic accumulation in the basin, inferred from sediment and pollen stratigraphies, varied over time and indicates low water levels between 11,200 and 8000 cal yr B.P. and from ca. 5300 to 3200 cal yr B.P. This history is consistent with the paleohydrology records from nearby Makepeace Cedar Swamp and other sites from New England and eastern Canada and with temporal patterns of regional changes in effective soil moisture inferred from pollen data. The similarities among these records indicate that (1) regional conditions were drier than today when white pine (Pinus strobus) grew abundantly in southern New England (11,200 to 9500 cal yr B.P.); (2) higher moisture levels existed between 8000 and 5500 cal yr B.P., possibly caused by increased meridonal circulation as the influence of the Laurentide ice sheet waned; and (3) drier conditions possibly contributed to the regional decline in hemlock (Tsuga) abundances at 5300 cal yr B.P. Although sea-level rise may have been an influence, moist climatic conditions during the late Holocene were the primary reason for a dramatic rise in water-table elevations.


2003 ◽  
Vol 38 (3-4) ◽  
pp. 273-290 ◽  
Author(s):  
Harold D Rowe ◽  
Thomas P Guilderson ◽  
Robert B Dunbar ◽  
John R Southon ◽  
Geoffrey O Seltzer ◽  
...  

2021 ◽  
Author(s):  
Douglas A. Wilcox ◽  
John Bateman ◽  
Kurt Kowalski ◽  
James Meeker ◽  
Nicole Dunn

Abstract Water-level fluctuations are critical in maintaining the diversity of plant communities in Great Lakes wetlands. Sedge/grass meadows are especially sensitive to such fluctuations. We conducted vegetation sampling in a sedge/grass-dominated Lake Michigan drowned-river-mouth wetland in 1995, 2002, and 2010 that followed high lake levels in 1986 and 1997. We also conducted photointerpretation studies in 16 years dating back to 1965 to include responses to high lake level in 1952 and 1974. Topographic/bathymetric data were collected to assess their influence on areal extent of sedge/grass meadow. Dominant species in short emergent and submersed/floating plant communities changed with water availability from 1995 to extreme low lake levels in 2002 and 2010. Sedge/grass meadow was dominated by Calamagrostis canadensis and Carex stricta in all years sampled, but Importance Values differed among years partly due to sampling in newly exposed areas. Photointerpretation studies showed a significant relation between percent of wetland in sedge/grass meadow and summer lake level, as well as the number of years since an extreme high lake level. From the topographic/bathymetric map created, we calculated the cumulative area above each 0.2-m contour to determine the percent of wetland dewatered in select years following extreme high lake levels. When compared with percent sedge/grass meadow in those years, relative changes in both predicted land surface and sedge/grass meadow demonstrated that accuracy of lake level as a predictor of area of sedge/grass meadow is dependent on topography/bathymetry. Our results regarding relations of plant-community response to hydrology are applicable to other Great Lakes wetlands.


2010 ◽  
Vol 7 (11) ◽  
pp. 3531-3548 ◽  
Author(s):  
K. Lindhorst ◽  
H. Vogel ◽  
S. Krastel ◽  
B. Wagner ◽  
A. Hilgers ◽  
...  

Abstract. Ancient Lake Ohrid is a steep-sided, oligotrophic, karst lake that was tectonically formed most likely within the Pliocene and often referred to as a hotspot of endemic biodiversity. This study aims on tracing significant lake level fluctuations at Lake Ohrid using high-resolution acoustic data in combination with lithological, geochemical, and chronological information from two sediment cores recovered from sub-aquatic terrace levels at ca. 32 and 60 m water depth. According to our data, significant lake level fluctuations with prominent lowstands of ca. 60 and 35 m below the present water level occurred during Marine Isotope Stage (MIS) 6 and MIS 5, respectively. The effect of these lowstands on biodiversity in most coastal parts of the lake is negligible, due to only small changes in lake surface area, coastline, and habitat. In contrast, biodiversity in shallower areas was more severely affected due to disconnection of today sub-lacustrine springs from the main water body. Multichannel seismic data from deeper parts of the lake clearly image several clinoform structures stacked on top of each other. These stacked clinoforms indicate significantly lower lake levels prior to MIS 6 and a stepwise rise of water level with intermittent stillstands since its existence as water-filled body, which might have caused enhanced expansion of endemic species within Lake Ohrid.


1997 ◽  
Vol 47 (2) ◽  
pp. 169-180 ◽  
Author(s):  
Mark B. Abbott ◽  
Michael W. Binford ◽  
Mark Brenner ◽  
Kerry R. Kelts

Sediment cores collected from the southern basin of Lake Titicaca (Bolivia/Peru) on a transect from 4.6 m above overflow level to 15.1 m below overflow level are used to identify a new century-scale chronology of Holocene lake-level variations. The results indicate that lithologic and geochemical analyses on a transect of cores can be used to identify and date century-scale lake-level changes. Detailed sedimentary analyses of subfacies and radiocarbon dating were conducted on four representative cores. A chronology based on 60 accelerator mass spectrometer radiocarbon measurements constrains the timing of water-level fluctuations. Two methods were used to estimate the14C reservoir age. Both indicate that it has remained nearly constant at ∼25014C yr during the late Holocene. Core studies based on lithology and geochemistry establish the timing and magnitude of five periods of low lake level, implying negative moisture balance for the northern Andean altiplano over the last 3500 cal yr. Between 3500 and 3350 cal yr B.P., a transition from massive, inorganic-clay facies to laminated organic-matter-rich silts in each of the four cores signals a water-level rise after a prolonged mid-Holocene dry phase. Evidence of other significant low lake levels occurs 2900–2800, 2400–2200, 2000–1700, and 900–500 cal yr B.P. Several of the low lake levels coincided with cultural changes in the region, including the collapse of the Tiwanaku civilization.


2010 ◽  
Vol 7 (3) ◽  
pp. 3651-3689 ◽  
Author(s):  
K. Lindhorst ◽  
H. Vogel ◽  
S. Krastel ◽  
B. Wagner ◽  
A. Hilgers ◽  
...  

Abstract. Ancient Lake Ohrid is a steep sided, oligotrophic, karst lake of likely Pliocene age and often referred to as a hotspot of endemic biodiversity. This study aims on tracing significant lake level fluctuations at Lake Ohrid using high-resolution acoustic data in combination with lithological, geochemical, and chronological information from two sediment cores recovered from sub-aquatic terrace levels at ca. 32 and 55 m. According to our data, significant lake level fluctuations with prominent lowstands of ca. 60 and 35 m below the present water level occurred during MIS 6 and MIS 5, respectively. The effect of these lowstands on biodiversity in most coastal parts of the lake is negligible, due to only small changes in lake surface area, coastline, and habitat. In contrast, biodiversity in shallower areas was more severely affected due to disconnection of today sub-lacustrine springs from the main water body. Multichannel seismic data from deeper parts of the lake clearly imaged several clinoform structures stacked on top of each other. These stacked clinoforms indicate significantly lower lake levels prior to MIS 6 and a stepwise rise of water level with intermittent stillstands since its existence as water filled body, which might have caused enhanced expansion of endemic species within Lake Ohrid.


1998 ◽  
Vol 26 (3) ◽  
pp. 397-421 ◽  
Author(s):  
D. Delvaux ◽  
F. Kervyn ◽  
E. Vittori ◽  
R.S.A. Kajara ◽  
E. Kilembe

1993 ◽  
Vol 40 (3) ◽  
pp. 332-342 ◽  
Author(s):  
Maria Socorro Lozano-Garcı́a ◽  
Beatriz Ortega-Guerrero ◽  
Margarita Caballero-Miranda ◽  
Jaime Urrutia-Fucugauchi

AbstractIn order to establish paleoenvironmental conditions during the late Quaternary, four cores from the Basin of Mexico (central Mexico) were drilled in Chalco Lake, located in the southeastern part of the basin. The upper 8 m of two parallel cores were studied, using paleomagnetic, loss-on-ignition, pollen, and diatom analyses. Based on 11 14C ages, the analyzed record spans the last 19,000 14C yr B.P. Volcanic activity has affected microfossil abundances, both directly and indirectly, resulting in absence or reduction of pollen and diatom assemblages. Important volcanic activity took place between 19,000 and 15,000 yr B.P. when the lake was a shallow alkaline marsh and an increase of grassland pollen suggests a dry, cold climate. During this interval, abrupt environmental changes with increasing moisture occurred. From 15,000 until 12,500 yr B.P. the lake level increased and the pollen indicates wetter conditions. The highest lake level is registered from 12,500 to ca. 9000 yr B.P. The end of the Pleistocene is characterized by an increase in humidity. From 9000 until ca. 3000 yr B.P. Chalco Lake was a saline marsh and the pollen record indicates warmer conditions. After 3000 yr B.P. the lake level increased and human disturbance dominates the lacustrine record.


Sign in / Sign up

Export Citation Format

Share Document