Influence of temperature and strain-rate on liquid metal embrittlement of an aluminum alloy containing bismuth inclusions

1988 ◽  
Vol 36 (8) ◽  
pp. 2249-2257
Author(s):  
D.D Pepovic ◽  
G.C Weatherly ◽  
W.A Miller
2021 ◽  
Author(s):  
Ahmed Kacem ◽  
Hervé Laurent ◽  
Sandrine Thuillier

Warm forming is widely used as increasing the temperature is a solution to improve the formability of aluminum alloys. The stress (or strain) state is one of the most important factors affecting the formability of metals. In warm forming, the temperature and strain rate also play an important role on the deformation and fracture behavior. Figuring out the relationship between formability, temperature, strain rate and stress state is of great importance for providing more understanding of ductile fracture in warm forming conditions. Therefore, the objective of this work is to investigate the influence of temperature on the ductile fracture of a 6000 series aluminum alloy sheet metal under different stress states. Dogbone specimens, notched tensile specimens with different radius, tensile specimens with a central hole and shear specimens are used to cover a wide range of stress states. The hybrid experimental-numerical approach is used to identify the fracture strain and the corresponding stress state parameters (i.e. stress triaxiality and Lode parameter). To this end, fracture tests are carried out at 200°C using a tensile machine to determine the instant of fracture. Numerical simulations of the tensile tests are performed in 3D with the finite element code Abaqus to predict the strain field and calculate the evolution of the stress state. To accurately model the material behavior the positive strain rate sensitivity in the flow stress response at elevated temperature is considered. The results show a strong dependency of the ductile fracture on the temperature, strain rate and stress state.


2020 ◽  
Vol 793 ◽  
pp. 139996
Author(s):  
Jee-Hyun Kang ◽  
Seok-Hyun Hong ◽  
Jungwoong Kim ◽  
Sung-Joon Kim

2020 ◽  
Vol 38 (9A) ◽  
pp. 1396-1405
Author(s):  
Arwa F. Tawfeeq ◽  
Matthew R. Barnett

The development in the manufacturing of micro-truss structures has demonstrated the effectiveness of brazing for assembling these sandwiches, which opens new opportunities for cost-effective and high-quality truss manufacturing. An evolving idea in micro-truss manufacturing is the possibility of forming these structures in different shapes with the aid of elevated temperature. This work investigates the formability and elongation of aluminum alloy sheets typically used for micro-truss manufacturing, namely AA5083 and AA3003. Tensile tests were performed at a temperature in the range of 25-500 ○C and strain rate in the range of 2x10-4 -10-2 s-1. The results showed that the clad layer in AA3003 exhibited an insignificant effect on the formability and elongation of AA3003. The formability of the two alloys was improved significantly with values of m as high as 0.4 and 0.13 for AA5083 and AA3003 at 500 °C. While the elongation of both AA5083 and AA3003 was improved at a higher temperature, the elongation of AA5083 was inversely related to strain rate. It was concluded that the higher the temperature is the better the formability and elongation of the two alloys but at the expense of work hardening. This suggests a trade-off situation between formability and strength. 


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
C. DiGiovanni ◽  
L. He ◽  
C. Hawkins ◽  
N. Y. Zhou ◽  
E. Biro

AbstractThe automotive industry is turning to advanced high strength steels (AHSS) to reduce vehicle weight and increase fuel efficiency. However, the zinc coating on AHSS can cause liquid metal embrittlement (LME) cracking during resistance spot welding. To understand the problem, the severity of the cracking must be measured. Typically, this is done from the weld cross-section. Currently, there is no standard procedure to determine which plane through the weld must be examined to gauge cracking severity, leading to a variety of practices for choosing a cutting plane. This work compares the magnitude and variability of LME severity measured from the plane of exhibiting the most severe surface cracking to arbitrarily chosen planes. The plane exhibiting the most severe cracks had more and longer cracks on the cross-section than the arbitrarily chosen plane, resulting in a higher crack severity measurement. This higher absolute measurement increased the relative accuracy of the examination, allowing for fewer welds to be examined to precisely determine the effect of LME mitigation methods on cracking severity, how welding parameters affect LME cracking severity and the predicted LME affected strength of a particular weld.


Sign in / Sign up

Export Citation Format

Share Document