Stimulation of Leptin Release by Actinomycin D in Rat Adipocytes

1998 ◽  
Vol 55 (8) ◽  
pp. 1309-1314 ◽  
Author(s):  
John N. Fain ◽  
Suleiman W. Bahouth
1974 ◽  
Vol 77 (1) ◽  
pp. 64-70 ◽  
Author(s):  
Gustav Wägar

ABSTRACT Whether the short-term regulation of thyroidal protein synthesis by TSH occurs at the transcriptional or the translational level was tested by measuring the effect of actinomycin D (act D) on the TSH-induced stimulation of L-14C-leucine incorporation into the thyroidal proteins of rats. TSH was injected 6 h before the rats were killed. The thyroid glands were then removed and incubated in vitro in the presence of L-14C-leucine for 2 h. The pronounced stimulation of leucine incorporation in the TSH-treated animals was depressed as compared with controls but still significant even when the animals had been pre-treated with 100 μg act D 24 and 7 h before sacrifice. On the other hand, act D strongly decreased incorporation of 3H-uridine into RNA. Short-term regulation of thyroidal protein synthesis by TSH appears to be partly but not wholly dependent on neosynthesis of RNA. Hence regulation may partly occur at the translation level of protein synthesis.


1973 ◽  
Vol 134 (4) ◽  
pp. 1103-1113 ◽  
Author(s):  
A. Betteridge ◽  
M. Wallis

The effect of insulin on the incorporation of radioactive leucine into growth hormone was investigated by using rat anterior pituitary glands incubated in vitro. A 50% stimulation over control values was observed at insulin concentrations above 2μm (280munits/ml). The effect was specific for growth hormone biosynthesis, over the range 1–5μm-insulin (140–700munits/ml). Lower more physiological concentrations had no significant effect in this system. Above 10μm (1.4 units/ml) total protein synthesis was also increased. The stimulation of growth hormone synthesis could be partially blocked by the addition of actinomycin D, suggesting that RNA synthesis was involved. Insulin was found to stimulate the rate of glucose utilization in a similar way to growth hormone synthesis. 2-Deoxyglucose and phloridzin, which both prevented insulin from stimulating glucose utilization, also prevented the effect of insulin on growth hormone synthesis. If glucose was replaced by fructose in the medium, the effect of insulin on growth hormone synthesis was decreased. We conclude that the rate of utilization of glucose may be an important step in mediating the effect of insulin on growth hormone synthesis.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 896 ◽  
Author(s):  
Günter A. Müller ◽  
Andreas W. Herling ◽  
Susanne Wied ◽  
Timo D. Müller

(1) Background: Acute administration of the cannabinoid receptor 1 (CB1R) inverse agonist Rimonabant (SR141716A) to fed Wistar rats was shown to elicit a rapid and short-lasting elevation of serum free fatty acids. (2) Methods: The effect of Rimonabant on lipolysis in isolated primary rat adipocytes was studied to raise the possibility for direct mechanisms not involving the (hypothalamic) CB1R. (3) Results: Incubation of these cells with Rimonabant-stimulated lipolysis to up to 25% of the maximal isoproterenol effect, which was based on both CB1R-dependent and independent mechanisms. The CB1R-dependent one was already effective at Rimonabant concentrations of less than 1 µM and after short-term incubation, partially additive to β-adrenergic agonists and blocked by insulin and, in part, by adenosine deaminase, but not by propranolol. It was accompanied by protein kinase A (PKA)-mediated association of hormone-sensitive lipase (HSL) with lipid droplets (LD) and dissociation of perilipin-1 from LD. The CB1R-independent stimulation of lipolysis was observed only at Rimonabant concentrations above 1 µM and after long-term incubation and was not affected by insulin. It was recapitulated by a cell-free system reconstituted with rat adipocyte LD and HSL. Rimonabant-induced cell-free lipolysis was not affected by PKA-mediated phosphorylation of LD and HSL, but abrogated by phospholipase digestion or emulsification of the LD. Furthermore, LD isolated from adipocytes and then treated with Rimonabant (>1 µM) were more efficient substrates for exogenously added HSL compared to control LD. The CB1R-independent lipolysis was also demonstrated in primary adipocytes from fed rats which had been treated with a single dose of Rimonabant (30 mg/kg). (4) Conclusions: These data argue for interaction of Rimonabant (at high concentrations) with both the LD surface and the CB1R of primary rat adipocytes, each leading to increased access of HSL to LD in phosphorylation-independent and dependent fashion, respectively. Both mechanisms may lead to direct and acute stimulation of lipolysis at peripheral tissues upon Rimonabant administration and represent targets for future obesity therapy which do not encompass the hypothalamic CB1R.


Sign in / Sign up

Export Citation Format

Share Document