scholarly journals Generalization of the Theory of Transition Times in Metabolic Pathways: A Geometrical Approach

1999 ◽  
Vol 77 (1) ◽  
pp. 23-36 ◽  
Author(s):  
Mónica Lloréns ◽  
Juan C. Nuño ◽  
Yoel Rodríguez ◽  
Enrique Meléndez-Hevia ◽  
Francisco Montero
1997 ◽  
Vol 327 (2) ◽  
pp. 493-498 ◽  
Author(s):  
Mónica LLORÉNS ◽  
C. Juan NUÑO ◽  
Francisco MONTERO

In the early seventies, Easterby began the analytical study of transition times for linear reaction schemes [Easterby (1973) Biochim. Biophys. Acta 293, 552-558]. In this pioneer work and in subsequent papers, a state function (the transient time) was used to measure the period before the stationary state, for systems constrained to work under both constant and variable input flux, was reached. Despite the undoubted usefulness of this quantity to describe the time-dependent features of these kinds of systems, its application to the study of chemical reactions under other constraints is questionable. In the present work, a generalization of these magnitudes to linear metabolic pathways functioning under a constant-affinity constraint is carried out. It is proved that classical definitions of transient times do not reflect the actual properties of the transition to the steady state in systems evolving under this restriction. Alternatively, a more adequate framework for interpretation of the transient times for systems with both constant and variable input flux is suggested. Within this context, new definitions that reflect more accurately the transient characteristics of constant affinity systems are stated. Finally, the meaning of these transient times is discussed.


2021 ◽  
Vol 9 ◽  
Author(s):  
Miriam Ruocco ◽  
Isabel Barrote ◽  
Jan Dirk Hofman ◽  
Katia Pes ◽  
Monya M. Costa ◽  
...  

The circadian clock is an endogenous time-keeping mechanism that enables organisms to adapt to external environmental cycles. It produces rhythms of plant metabolism and physiology, and interacts with signaling pathways controlling daily and seasonal environmental responses through gene expression regulation. Downstream metabolic outputs, such as photosynthesis and sugar metabolism, besides being affected by the clock, can also contribute to the circadian timing itself. In marine plants, studies of circadian rhythms are still way behind in respect to terrestrial species, which strongly limits the understanding of how they coordinate their physiology and energetic metabolism with environmental signals at sea. Here, we provided a first description of daily timing of key core clock components and clock output pathways in two seagrass species, Cymodocea nodosa and Zostera marina (order Alismatales), co-occurring at the same geographic location, thus exposed to identical natural variations in photoperiod. Large differences were observed between species in the daily timing of accumulation of transcripts related to key metabolic pathways, such as photosynthesis and sucrose synthesis/transport, highlighting the importance of intrinsic biological, and likely ecological attributes of the species in determining the periodicity of functions. The two species exhibited a differential sensitivity to light-to-dark and dark-to-light transition times and could adopt different growth timing based on a differential strategy of resource allocation and mobilization throughout the day, possibly coordinated by the circadian clock. This behavior could potentially derive from divergent evolutionary adaptations of the species to their bio-geographical range of distributions.


2010 ◽  
Author(s):  
Sohan Lal ◽  
Kolin Paul ◽  
James Gomes
Keyword(s):  

Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
E Vikeved ◽  
R Buonfiglio ◽  
T Kogej ◽  
A Backlund

1965 ◽  
Vol 49 (3) ◽  
pp. 427-435 ◽  
Author(s):  
K. D. Voigt ◽  
J. Tamm ◽  
U. Volkwein ◽  
H. Schedewie

ABSTRACT Pregnenolone-sulphate (400 mg) was perfused through isolated dog livers. The following steroids were isolated in the perfusate: pregnenolone, progesterone, dehydroepiandrosterone, androst-5-ene-diol and the two steroid conjugates, i. e. pregnenolone-sulphate and dehydroepiandrosterone-sulphate. Two »free« steroids and one steroid conjugate could not be characterized. A tentative scheme for the metabolic pathways of pregnenolone-sulphate is presented.


Author(s):  
Kamila B. Muchowska ◽  
Sreejith Jayasree VARMA ◽  
Joseph Moran

How core biological metabolism initiated and why it uses the intermediates, reactions and pathways that it does remains unclear. Life builds its molecules from CO<sub>2 </sub>and breaks them down to CO<sub>2 </sub>again through the intermediacy of just five metabolites that act as the hubs of biochemistry. Here, we describe a purely chemical reaction network promoted by Fe<sup>2+ </sup>in which aqueous pyruvate and glyoxylate, two products of abiotic CO<sub>2 </sub>reduction, build up nine of the eleven TCA cycle intermediates, including all five universal metabolic precursors. The intermediates simultaneously break down to CO<sub>2 </sub>in a life-like regime resembling biological anabolism and catabolism. Introduction of hydroxylamine and Fe<sup>0 </sup>produces four biological amino acids. The network significantly overlaps the TCA/rTCA and glyoxylate cycles and may represent a prebiotic precursor to these core metabolic pathways.


Sign in / Sign up

Export Citation Format

Share Document