Effect of Crystallographic Orientation on Cutting Forces and Surface Quality in Diamond Cutting of Single Crystal

CIRP Annals ◽  
1994 ◽  
Vol 43 (1) ◽  
pp. 39-42 ◽  
Author(s):  
Z.J. Yuan ◽  
W.B. Lee ◽  
Y.X. Yao ◽  
M. Zhou
Author(s):  
Jinyang Ke ◽  
Xiao Chen ◽  
Jianguo Zhang ◽  
Changlin Liu ◽  
Guoqing Xu ◽  
...  

Abstract Laser-assisted diamond cutting is a promising process for machining hard and brittle materials. A deep knowledge of material removal mechanism and attainable surface integrity are crucial to the development of this new technique. This paper focuses on the application of laser-assisted diamond cutting to single crystal silicon to investigate key characteristics of this process. The influence of laser power on the ductile machinability of single crystal silicon, in terms of the critical depth of cut for ductile-brittle transition in laser-assisted diamond cutting, is investigated quantitatively using a plunge-cut method. The experimental results reveal that this process can enhance the silicon’s ductility and machinability. The critical depth of cut has been increased by up to 330% with laser assistance, and its degree generally increases with the increase of laser power. The cross-sectional transmission electron microscope observation results indicate that laser-assisted diamond cutting is able to realize the subsurface damage free processing of single crystal silicon. In order to verify the ability of the laser-assisted diamond cutting to improve the surface quality, the face turning tests are also carried out. A significant improvement of surface quality has been obtained by laser-assisted diamond cutting: Sz (maximum height) has been reduced by 85% and Sa (arithmetical mean height) has been reduced by 45%.


2016 ◽  
Vol 90 (5-8) ◽  
pp. 1749-1768 ◽  
Author(s):  
Yunguang Zhou ◽  
Yadong Gong ◽  
Ming Cai ◽  
Zongxiao Zhu ◽  
Qi Gao ◽  
...  

Author(s):  
Vladimir Yu. Sadovoy ◽  
Vladimir D. Blank ◽  
Sergey A. Terentiev ◽  
Dmitriy V. Teteruk ◽  
Sergey Yu. Troschiev

Dependence of secondary electron emission coefficient on the chosen crystallographic orientation for a synthetic single crystal diamond of type IIb, grown up by method of a temperature gradient, was investigated. The type IIb of single crystal diamond was chosen because of wide applicability in different areas of microelectronics and the semiconductor properties. Quantitative measurements of secondary electron emission coefficients with energy of primary beam about 7 keV and above for various crystallographic orientations was carried out: the highest coefficient of secondary electronic emission are recorded for the direction (100), cubic sector, and also in intergrowth area that is confirmed by a picture of distribution of the luminescence intensity for various sectors of a single crystal received by means of true secondary electrons detector of scanning electron microscope. The results for (100) area are outstanding: 8.18 at primary beam energy of 7 keV, 10.13 at 10 keV, 49.78 at 30 keV. The results for intergrowth area are similar: 10.10 at primary beam energy of 7 keV, 13.56 at 10 keV, 64.41 at 30 keV. The crystallographic directions (111) have shown secondary electron emission coefficient 4-6 times lower in comparison with (100) and intergrowth area: 2.54 on the average at primary beam energy of 7 keV, 2.75 at 10 keV, 10.03 at 30 keV. The non-standard behavior of secondary electron emission coefficient at the high energy primary beam for all orientations of single crystal diamond is shown: increase in secondary electron emission coefficient with increase in energy of primary beam. At the moment the reason of such behavior is not clear up to the end and since this fact causes a great interest of researchers, considerably expands applicability of the existing devices and detectors due to replacement of a functional element on diamond one, and also opens big opportunities for formation of new field of microelectronics, this facts demand further in-depth study by means of various methods of the structural and surface analysis.


Sign in / Sign up

Export Citation Format

Share Document