A new detection scheme for synchronous, high resolution ZEKE and MATI spectroscopy demonstrated on the Phenol·Ar complex

1999 ◽  
Vol 315 (1-2) ◽  
pp. 103-108 ◽  
Author(s):  
Caroline E.H. Dessent ◽  
Stephen R. Haines ◽  
Klaus Müller-Dethlefs
2004 ◽  
Vol 17 (24) ◽  
pp. 4805-4822 ◽  
Author(s):  
Sarah M. Thomas ◽  
Andrew K. Heidinger ◽  
Michael J. Pavolonis

Abstract A comparison is made between a new operational NOAA Advanced Very High Resolution Radiometer (AVHRR) global cloud amount product to those from established satellite-derived cloud climatologies. The new operational NOAA AVHRR cloud amount is derived using the cloud detection scheme in the extended Clouds from AVHRR (CLAVR-x) system. The cloud mask within CLAVR-x is a replacement for the Clouds from AVHRR phase 1 (CLAVR-1) cloud mask. Previous analysis of the CLAVR-1 cloud climatologies reveals that its utility for climate studies is reduced by poor high-latitude performance and the inability to include data from the morning orbiting satellites. This study demonstrates, through comparison with established satellite-derived cloud climatologies, the ability of CLAVR-x to overcome the two main shortcomings of the CLAVR-1-derived cloud climatologies. While systematic differences remain in the cloud amounts from CLAVR-x and other climatologies, no evidence is seen that these differences represent a failure of the CLAVR-x cloud detection scheme. Comparisons for July 1995 and January 1996 indicate that for most latitude zones, CLAVR-x produces less cloud than the International Satellite Cloud Climatology Project (ISCCP) and the University of Wisconsin High Resolution Infrared Radiation Sounder (UW HIRS). Comparisons to the Moderate Resolution Imaging Spectroradiometer (MODIS) for 1–8 April 2003 also reveal that CLAVR-x tends to produce less cloud. Comparison of the seasonal cycle (July–January) of cloud difference with ISCCP, however, indicates close agreement. It is argued that these differences may be due to the methodology used to construct a cloud amount from the individual pixel-level cloud detection results. Overall, the global cloud amounts from CLAVR-x appear to be an improvement over those from CLAVR-1 and compare well to those from established satellite cloud climatologies. The CLAVR-x cloud detection results have been operational since late 2003 and are available in real time from NOAA.


2007 ◽  
Vol 20 (6) ◽  
pp. 546-551 ◽  
Author(s):  
Huang Xiaogang ◽  
Chen Wenyuan ◽  
Liu Wu ◽  
Zhang Weiping ◽  
Wu Xiaosheng

2020 ◽  
Vol 238 ◽  
pp. 06005
Author(s):  
Arturo Villegas ◽  
Juan P. Torres

Quantum estimation theory provides bounds for the precision in the estimation of a set of parameters that characterize a system. Two questions naturally arise: Is any of these bounds tight? And if this is the case, what type of measurements can attain such a limit? In this work we show that for phase objects, it is possible to find a tight resolution bound. Moreover one can find a set of spatial modes whose detection provides an optimal estimation of the complete set of parameters for which we propose a homodyne detection scheme. We call this method spatial spectroscopy since it mimics in the spatial domain what conventional spectroscopy methods do in the frequency domain employing many frequencies (hyperspectral imaging).


Symmetry ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 3 ◽  
Author(s):  
Muhammad Aamir ◽  
Yi-Fei Pu ◽  
Ziaur Rahman ◽  
Muhammad Tahir ◽  
Hamad Naeem ◽  
...  

Building detection in satellite images has been considered an essential field of research in remote sensing and computer vision. There are currently numerous techniques and algorithms used to achieve building detection performance. Different algorithms have been proposed to extract building objects from high-resolution satellite images with standard contrast. However, building detection from low-contrast satellite images to predict symmetrical findings as of past studies using normal contrast images is considered a challenging task and may play an integral role in a wide range of applications. Having received significant attention in recent years, this manuscript proposes a methodology to detect buildings from low-contrast satellite images. In an effort to enhance visualization of satellite images, in this study, first, the contrast of an image is optimized to represent all the information using singular value decomposition (SVD) based on the discrete wavelet transform (DWT). Second, a line-segment detection scheme is applied to accurately detect building line segments. Third, the detected line segments are hierarchically grouped to recognize the relationship of identified line segments, and the complete contours of the building are attained to obtain candidate rectangular buildings. In this paper, the results from the method above are compared with existing approaches based on high-resolution images with reasonable contrast. The proposed method achieves high performance thus yields more diversified and insightful results over conventional techniques.


2012 ◽  
Vol 5 (10) ◽  
pp. 2469-2480 ◽  
Author(s):  
H. M. Schulz ◽  
B. Thies ◽  
J. Cermak ◽  
J. Bendix

Abstract. In this paper a new technique for the detection of fog and low stratus in 1 km resolution from MSG SEVIRI data is presented. The method relies on the pan-sharpening of 3 km narrow-band channels using the 1 km high-resolution visible (HRV) channel. As solar and thermal channels had to be sharpened for the technique, a new approach based on an existing pan-sharpening method was developed using local regressions. A fog and low stratus detection scheme originally developed for 3 km SEVIRI data was used as the basis to derive 1 km resolution fog and low stratus masks from the sharpened channels. The sharpened channels and the fog and low stratus masks based on them were evaluated visually and by various statistical measures. The sharpened channels deviate only slightly from reference images regarding their pixel values as well as spatial features. The 1 km fog and low stratus masks are therefore deemed of high quality. They contain many details, especially where fog is restricted by complex terrain in its extent, that cannot be detected in the 3 km resolution.


2012 ◽  
Vol 5 (3) ◽  
pp. 4409-4446 ◽  
Author(s):  
H. M. Schulz ◽  
B. Thies ◽  
J. Cermak ◽  
J. Bendix

Abstract. In this paper a new technique for the detection of fog and low stratus in 1 km resolution from MSG SEVIRI data is presented. The method relies on the pan-sharpening of 3 km narrow-band channels using the 1 km high-resolution visible (HRV) channel. As solar and thermal channels had to be sharpened for the technique, a new approach based on an existing pan-sharpening method was developed using local regressions. A fog and low stratus detection scheme originally developed for 3 km SEVIRI data was used as the basis to derive 1 km resolution fog and low stratus masks from the sharpened channels. The sharpened channels and the fog and low stratus masks based on them were evaluated visually and by various statistical measures. The sharpened channels deviate only slightly from reference images regarding their pixel values as well as spatial features. The 1 km fog and low stratus masks are therefore deemed of high quality. They contain many details, especially where fog is restricted by complex terrain in its extent, that cannot be detected in the 3 km resolution.


Sign in / Sign up

Export Citation Format

Share Document