Activation of c-fos mRNA in the brain by the κ-opioid receptor agonist enadoline and the NMDA receptor antagonist dizocilpine

1997 ◽  
Vol 328 (1) ◽  
pp. 31-36 ◽  
Author(s):  
Peter K Panegyres ◽  
John Hughes
2011 ◽  
Vol 301 (2) ◽  
pp. R448-R455 ◽  
Author(s):  
Jason Wright ◽  
Carlos Campos ◽  
Thiebaut Herzog ◽  
Mihai Covasa ◽  
Krzysztof Czaja ◽  
...  

Intraperitoneal injection of CCK reduces food intake and triggers a behavioral pattern similar to natural satiation. Reduction of food intake by CCK is mediated by vagal afferents that innervate the stomach and small intestine. These afferents synapse in the hindbrain nucleus of the solitary tract (NTS) where gastrointestinal satiation signals are processed. Previously, we demonstrated that intraperitoneal (IP) administration of either competitive or noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonists attenuates reduction of food intake by CCK. However, because vagal afferents themselves express NMDA receptors at both central and peripheral endings, our results did not speak to the question of whether NMDA receptors in the brain play an essential role in reduction of feeding by CCK. We hypothesized that activation of NMDA receptors in the NTS is necessary for reduction of food intake by CCK. To test this hypothesis, we measured food intake following IP CCK, subsequent to NMDA receptor antagonist injections into the fourth ventricle, directly into the NTS or subcutaneously. We found that either fourth-ventricle or NTS injection of the noncompetitive NMDA receptor antagonist MK-801 was sufficient to inhibit CCK-induced reduction of feeding, while the same antagonist doses injected subcutaneously did not. Similarly fourth ventricle injection of d-3-(2-carboxypiperazin-4-yl)-1-propenyl-1-phosphoric acid (d-CPPene), a competitive NMDA receptor antagonist, also blocked reduction of food intake following IP CCK. Finally, d-CPPene injected into the fourth ventricle attenuated CCK-induced expression of nuclear c-Fos immunoreactivity in the dorsal vagal complex. We conclude that activation of NMDA receptors in the hindbrain is necessary for the reduction of food intake by CCK. Hindbrain NMDA receptors could comprise a critical avenue for control and modulation of satiation signals to influence food intake and energy balance.


1996 ◽  
Vol 76 (3) ◽  
pp. 2093-2096 ◽  
Author(s):  
X. M. Wang ◽  
S. S. Mokha

1. The present study investigated opioid-mediated modulation of N-methyl-D-aspartic acid (NMDA)-evoked responses of trigeminothalamic neurons in the superficial and deeper dorsal horn of the medulla (trigeminal nucleus caudalis) in rats anesthetized with urethane. 2. Microiontophoretic application of NMDA activated 18/19 trigeminothalamic neurons. Administration of [D-Ala2, N-Me-Phe4,Gly5-ol]-Enkephalin, a selective mu-opioid receptor agonist, reduced the NMDA-evoked responses in 77% of trigeminothalamic neurons. [D-Pen2,5]-Enkephalin, a selective delta-opioid receptor agonist, produced inhibition of NMDA-evoked responses in 36% of neurons. 3. We suggest that 1) NMDA-receptor activation excites trigeminothalamic nociceptive neurons and may, therefore, mediate nociceptive transmission in the medullary dorsal horn; and 2) the predominantly inhibitory modulation of NMDA-receptor-mediated responses of nociceptive trigeminothalamic neurons by activation of mu- and delta-opioid receptors may provide a neural mechanism for the antinociceptive actions of opioids.


2020 ◽  
Vol 237 (12) ◽  
pp. 3591-3602
Author(s):  
Sanjana Mada ◽  
Lisa R. Gerak ◽  
Amélie Soyer ◽  
David R. Maguire ◽  
Zehua Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document