Demethylation of the human telomerase catalytic subunit (hTERT) gene promoter reduced hTERT expression and telomerase activity and shortened telomeres

2003 ◽  
Vol 289 (2) ◽  
pp. 326-334 ◽  
Author(s):  
Isabelle Guilleret ◽  
Jean Benhattar
2016 ◽  
Vol 62 (5) ◽  
pp. 544-554 ◽  
Author(s):  
D.D. Zhdanov ◽  
D.A. Vasina ◽  
E.V. Orlova ◽  
V.S. Orlova ◽  
M.V. Pokrovskaya ◽  
...  

Human telomerase catalytic subunit hTERT is subjected to alternative splicing results in loss of its function and leads to decrease of telomerase activity. However, very little is known about the mechanism of hTERT pre-mRNA alternative splicing. Apoptotic endonuclease EndoG is known to participate this process. The aim of this study was to determine the role of EndoG in regulation of hTERT alternative splicing. Increased expression of b-deletion splice variant was determined during EndoG over-expression in CaCo-2 cell line, after EndoG treatment of cell cytoplasm and nuclei and after nuclei incubation with EndoG digested cell RNA. hTERT alternative splicing was induced by 47-mer RNA oligonucleotide in naked nuclei and in cells after transfection. Identified long non-coding RNA, that is the precursor of 47-mer RNA oligonucleotide. Its size is 1754 nucleotides. Based on the results the following mechanism was proposed. hTERT pre-mRNA is transcribed from coding DNA strand while long non-coding RNA is transcribed from template strand of hTERT gene. EndoG digests long non-coding RNA and produces 47-mer RNA oligonucleotide complementary to hTERT pre-mRNA exon 8 and intron 8 junction place. Interaction of 47-mer RNA oligonucleotide and hTERT pre-mRNA causes alternative splicing.


2002 ◽  
Vol 365 (3) ◽  
pp. 765-772 ◽  
Author(s):  
Hyunggee KIM ◽  
James FARRIS ◽  
Shelly A. CHRISTMAN ◽  
Byung-Whi KONG ◽  
Linda K. FOSTER ◽  
...  

The in vitro immortalization of primary human mammary epithelial (HME) cells solely by the exogenous introduction of the catalytic subunit of human telomerase (hTERT) has been achieved. Early passage hTERT-transfected HME (T-HME) cells continuously decreased the length and density of telomeres even in the presence of telomerase activity, with a significant number of cells staining positive for senescence-associated β-galactosidase (SA-β-gal). Subsequently, with the increase in cell passages, the copy number of the exogenously transfected hTERT gene and the percentage of SA-β-gal positive cells were found to decrease. Eventually, a single copy of the exogenous hTERT gene was observed in the relatively later passage T-HME cells in which telomere length was elongated and stabilized without obvious activation of endogenous hTERT and c-Myc expression. In T-HME cells, the expression of two p53 regulated genes p21WAF and HDM2 increased (as in primary senescent HME cells), and was found to be further elevated as the function of p53 was activated by treatment with DNA-damaging agents. p16INK4a was shown to be significantly higher in the primary senescent HME and the early passage T-HME cells when compared with the primary presenescent HME cells, with a dramatic repression of p16INK4a observed in the later passage T-HME cells. In addition, the expression of E2F1 and its transcription factor activity were found to be significantly higher in the later passage T-HME cells when compared with the earlier passage T-HME cells. Together, our results indicate that in vitro immortalization in HME cells may require the activation of the function of telomerase and other genetic alterations such as the spontaneous loss of p16INK4a expression.


2002 ◽  
Vol 101 (4) ◽  
pp. 335-341 ◽  
Author(s):  
Isabelle Guilleret ◽  
Pu Yan ◽  
Fabienne Grange ◽  
Richard Braunschweig ◽  
Fred T. Bosman ◽  
...  

2017 ◽  
Vol 63 (4) ◽  
pp. 296-305 ◽  
Author(s):  
D.D. Zhdanov ◽  
D.A. Vasina ◽  
V.S. Orlova ◽  
E.V. Orlova ◽  
D.V. Grishin ◽  
...  

Activity of telomerase catalytic subunit hTERT (human Telomerase Reverse Transcriptase) can be regulated by alternative splicing of its mRNA. At present time exact mechanism of hTERT splicing is not fully understood. Apoptotic endonuclease EndoG is known to participate this process. EndoG expression is induced by DNA damages. The aim of this work was to investigate the ability of DNA-damaging agents with different mechanism of action to induce EndoG expression and inhibit telomerase activity due to the activation of hTERT alternative splicing in normal activated human CD4+ and CD8+ T-lymphocytes. All investigated DNA-damaging agents were able to induce EndoG expression. Cisplatin, a therapeutic compound, producing DNA cross-links induced the highest level of DNA damages and EndoG expression. Incubation of CD4+ and CD8+ T-cells with cisplatin caused the changes in proportion of hTERT splice variants and inhibition of telomerase activity.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4337-4337
Author(s):  
Hiroshi Handa ◽  
Hirokazu Murakami ◽  
Takafumi Matsushima

Abstract Telomerase is a telomere-specific DNA polymerase consisting of protein and RNA components, which is activated in germline cells and the majority of cancers and serves to counter the consequences of telomere shortening. Recently, it has been reported that telomerase activity level was correlated with the progression and prognosis of hematopoietic malignancies, thus, it is important to analyze telomerase activity. The protein component, hTERT, is believed to be the catalytic subunit of human telomerase and its expression at the mRNA level correlates well with telomerase activity in vitro. Current techniques for assaying telomerase activity detect only the mean activity in a sample and unable to isolate specific cell sub-populations. We developed immuno-fluorescence flow cytometry based assay to detect hTERT expression using a monoclonal antibody. This method allows sub-population of cells to be separated according to hTERT expression more easily, combining antibody against cell surface antigen. Expression level of hTERT in T cell leukemia cell line Jurkat and myeloma cell line RPMI8226, KMS12PE, KMS28PE, were very high and well correlated in between this method and real time quantitative PCR. Human mature granulocytes supposed to have no telomerase activity did not show any hTERT expression in this flow-cytometric assay. Immuno-histochemistry demonstrated the specific nuclear expression of hTERT. Bone marrow samples were obtained from 8 MDS patients (5 RA, 1 RAEB, 2 RAEB-t) and analyzed hTERT isolating MDS blast cells. In the blast population, cells expressing hTERT were 33.1% (21.4–40.3) in RA patient sample, while those in RAEB and RAEB-t patients sample were significantly higher at 75.1% (68.2–81.9). When CD34 positive hematopoietic stem cells were analyzed, the cells expressing hTERT were higher in RAEB and RAEB-t than in RA. Mature granulocyte population in bone marrow cells did not show any positivity. Our result suggests that hTERT expression and telomerase activity in the MDS blasts or CD34 positive stem cells were up-regulated during the disease progression and the high expression level of hTERT and telomerase activity were not due to the blast expansion. This technique allows us to easily analyze hTERT expression in hematopoietic malignancy even though the malignant cells were very small in bone marrow sample, e.g. MDS, MM or MGUS of which telomerase activity were supposed to be correlated with the disease progression and prognosis.


2000 ◽  
Vol 11 (10) ◽  
pp. 1397-1406 ◽  
Author(s):  
Shoji Koga ◽  
Satoshi Hirohata ◽  
Yasuko Kondo ◽  
Tadashi Komata ◽  
Masahiro Takakura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document