Athymic nu/nu (nude) mice are resistant to CD45RBhigh T-cell-mediated chronic colitis: Role of NK and B-cells

2003 ◽  
Vol 124 (4) ◽  
pp. A486
Author(s):  
Stephen Laroux ◽  
Laura Gray ◽  
Sulaiman Bharwani ◽  
Dana Merrill ◽  
John Fuseler ◽  
...  
Keyword(s):  
T Cell ◽  
B Cells ◽  
2001 ◽  
Vol 120 (5) ◽  
pp. A38-A38
Author(s):  
F LAROUX ◽  
L GRAY ◽  
S BHARWANI ◽  
D MERRILL ◽  
J FUSELER ◽  
...  
Keyword(s):  
T Cell ◽  
Nk Cells ◽  

2001 ◽  
Vol 120 (5) ◽  
pp. A38
Author(s):  
F. Stephen Laroux ◽  
Laura Gray ◽  
Sulaiman Bharwani ◽  
Dana Merrill ◽  
John Fuseler ◽  
...  
Keyword(s):  
T Cell ◽  
Nk Cells ◽  

1997 ◽  
Vol 186 (10) ◽  
pp. 1749-1756 ◽  
Author(s):  
Atsushi Mizoguchi ◽  
Emiko Mizoguchi ◽  
R. Neal Smith ◽  
Frederic I. Preffer ◽  
Atul K. Bhan

The role of antibodies (Abs) in the development of chronic colitis in T cell receptor (TCR)-α−/− mice was explored by creating double mutant mice (TCR-α−/− × immunoglobulin (Ig)μ−/−), which lack B cells. TCR-α−/− × Igμ−/− mice spontaneously developed colitis at an earlier age, and the colitis was more severe than in TCR-α−/− mice. Colitis was induced in recombination-activating gene-1 (RAG-1−/−) mice by the transfer of mesenteric lymph node (MLN) cells from TCR-α−/− × Igμ−/− mice. When purified B cells from TCR-α−/− mice were mixed with MLN cells before cell transfer, colitis did not develop in RAG-1−/− mice. Administration of the purified Ig from TCR-α−/− mice and a mixture of monoclonal autoAbs reactive with colonic epithelial cells led to attenuation of colitis in TCR-α−/− × Igμ−/− mice. Apoptotic cells were increased in the colon, MLN, and spleen of TCR-α−/− × Igμ−/− mice as compared to Igμ−/− mice and TCR-α−/− mice. Administration of the purified Ig from TCR-α−/− mice into TCR-α−/− × Igμ−/− mice led to decrease in the number of apoptotic cells. These findings suggest that although B cells are not required for the initiation of colitis, B cells and Igs (autoAbs) can suppress colitis, presumably by affecting the clearance of apoptotic cells.


1996 ◽  
Vol 183 (2) ◽  
pp. 403-411 ◽  
Author(s):  
E Szomolanyi-Tsuda ◽  
R M Welsh

Polyomavirus (PyV) infection of SCID mice, which lack functional T and B cells, leads to a lethal acute myeloproliferative disease (AMD) and to high levels of virus replication in several organs by two wk after infection. This is in contrast to infection of T cell-deficient athymic nude mice, which are resistant to acute PyV-induced disease and poorly replicate the virus in their organs. This major difference in the virus load and in the outcome of PyV infection between SCID and nude mice suggested that an efficient, T cell-independent antiviral mechanism operates in T cell-deficient, PyV infected mice. To investigate this possibility, mice with different genetically engineered T and/or B cell deficiencies and SCID mice adoptively reconstituted with B and/or T cells were infected with PyV. The results indicated that the presence of B cells in the absence of T cells protected mice from the AMD, and this was accompanied by a major reduction of PyV in all organs tested. Sera from PyV-infected T cell receptor (TCR) alpha beta knockout or TCR alpha beta gamma delta knockout mice contained IgG2a antibodies to PyV. Sera or purified immunoglobulin fractions from PyV-infected TCR alpha beta knockout mice protected SCID mice from the PyV-induced AMD. To our knowledge, this is the first report of an effective T cell-independent antibody response clearing a virus and changing the outcome of infection from 100% mortality to 100% survival.


1991 ◽  
Vol 173 (6) ◽  
pp. 1433-1439 ◽  
Author(s):  
R H Lin ◽  
M J Mamula ◽  
J A Hardin ◽  
C A Janeway

A novel mechanism for breaking T cell self tolerance is described. B cells induced to make autoantibody by immunization of mice with the non-self protein human cytochrome c can present the self protein mouse cytochrome c to autoreactive T cells in immunogenic form. This mechanism of breaking T cell self tolerance could account for the role of foreign antigens in breaking not only B cell but also T cell self tolerance, leading to sustained autoantibody production in the absence of the foreign antigen.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Ting-ting Zhang ◽  
David G Gonzalez ◽  
Christine M Cote ◽  
Steven M Kerfoot ◽  
Shaoli Deng ◽  
...  

To reconcile conflicting reports on the role of CD40 signaling in germinal center (GC) formation, we examined the earliest stages of murine GC B cell differentiation. Peri-follicular GC precursors first expressed intermediate levels of BCL6 while co-expressing the transcription factors RelB and IRF4, the latter known to repress Bcl6 transcription. Transition of GC precursors to the BCL6hi follicular state was associated with cell division, although the number of required cell divisions was immunogen dose dependent. Potentiating T cell help or CD40 signaling in these GC precursors actively repressed GC B cell maturation and diverted their fate towards plasmablast differentiation, whereas depletion of CD4+ T cells promoted this initial transition. Thus while CD40 signaling in B cells is necessary to generate the immediate precursors of GC B cells, transition to the BCL6hi follicular state is promoted by a regional and transient diminution of T cell help.


1998 ◽  
Vol 188 (1) ◽  
pp. 145-155 ◽  
Author(s):  
Thomas Fehr ◽  
Robert C. Rickert ◽  
Bernhard Odermatt ◽  
Jürgen Roes ◽  
Klaus Rajewsky ◽  
...  

Coligation of CD19, a molecule expressed during all stages of B cell development except plasmacytes, lowers the threshold for B cell activation with anti-IgM by a factor of 100. The cytoplasmic tail of CD19 contains nine tyrosine residues as possible phosphorylation sites and is postulated to function as the signal transducing element for complement receptor (CR)2. Generation and analysis of CD19 gene–targeted mice revealed that T cell–dependent (TD) antibody responses to proteinaceous antigens were impaired, whereas those to T cell–independent (TI) type 2 antigens were normal or even augmented. These results are compatible with earlier complement depletion studies and the postulated function of CD19. To analyze the role of CD19 in antiviral antibody responses, we immunized CD19−/− mice with viral antigens of TI-1, TI-2, and TD type. The effect of CD19 on TI responses was more dependent on antigen dose and replicative capacity than on antigen type. CR blocking experiments confirmed the role of CD19 as B cell signal transducer for complement. In contrast to immunization with protein antigens, infection of CD19−/− mice with replicating virus led to generation of specific germinal centers, which persisted for >100 d, whereas maintenance of memory antibody titers as well as circulating memory B cells was fully dependent on CD19. Thus, our study confirms a costimulatory role of CD19 on B cells under limiting antigen conditions and indicates an important role for B cell memory.


2017 ◽  
Vol 185 ◽  
pp. 56-63 ◽  
Author(s):  
Haider H. Mohammed Ali ◽  
Nadzieja Drela
Keyword(s):  
T Cell ◽  
B Cells ◽  

Sign in / Sign up

Export Citation Format

Share Document