Liminal distention induces segmental contractions in the proximal colon and peristalsis in the distal colon of the guinea pig: Selective 5-HT4 agonist enhances the proximal colonic motility but not distal one

2001 ◽  
Vol 120 (5) ◽  
pp. A753
Author(s):  
Shigeru Yamato ◽  
Ryosuke Shoda ◽  
Akira Muraoka ◽  
Jun-Ich Akiyama ◽  
Masayuki Uchida ◽  
...  
2007 ◽  
Vol 293 (1) ◽  
pp. R64-R69 ◽  
Author(s):  
Kiyoshi Tsukamoto ◽  
Hajime Ariga ◽  
Chris Mantyh ◽  
Theodore N. Pappas ◽  
Hidenori Yanagi ◽  
...  

Enterochromaffin (EC) cells of the epithelial cells release 5-HT into the lumen, as well as basolateral border. However, the physiological role of released 5-HT into the lumen is poorly understood. Concentrations of 5-HT in the colonic mucosa, colonic lumen, and feces were measured by HPLC in rats. To investigate whether intraluminal 5-HT accelerates colonic transit, 5-HT and 51Cr were administered into the lumen of the proximal colon, and colonic transit was measured. To investigate whether 5-HT is released into the lumen, we used an ex vivo model of isolated vascularly and luminally perfused rat proximal colon. To investigate whether luminal 5-HT is involved in regulating stress-induced colonic motility, the distal colonic motility was recorded under the stress loading, and a 5-HT3 receptor antagonist (ondansetron, 10−6 M, 0.5 ml) was administered intraluminally of the distal colon. Tissue content of 5-HT in the proximal colon (15.2 ± 4.3 ng/mg wet tissue) was significantly higher than that in the distal colon (3.3 ± 0.7 ng/mg wet tissue), while fecal content and luminal concentration of 5-HT was almost the same between the proximal and distal colon. Luminal administration of 5-HT (10−6–10−5 M) significantly accelerated colonic transit. Elevation of intraluminal pressure by 10 cmH2O significantly increased the luminal concentration of 5-HT but not the vascular concentration of 5-HT. Stress-induced stimulation of the distal colonic motility was significantly attenuated by the luminal administration of ondansetron. These results suggest that luminally released 5-HT from EC cells plays an important role in regulating colonic motility in rats.


1983 ◽  
Vol 245 (4) ◽  
pp. G582-G588 ◽  
Author(s):  
W. J. Snape ◽  
S. Shiff

Colonic motility was examined in the proximal (taeniated) and distal (nontaeniated) colon of New Zealand White rabbits. Colonic myoelectric and contractile activities were recorded by bipolar electrodes and extraluminal strain gauges sewn on the antimesenteric serosal surface of the proximal and distal colon. Slow-wave frequency consistently was slower in the proximal colon (13.2 +/- 0.9) compared with the distal colon (15.8 +/- 1.2) (P less than 0.05). During the control period 81.8 +/- 5.2% of slow waves have superimposed spike potentials in the proximal colon. The distal colon had similar amounts of spike activity. The distal colon had increased base-line contractility (P less than 0.02). Atropine inhibited spike and contractile activity on both sides of the colon, but the distal colon still had more contractile activity than the proximal colon (P less than 0.02). The alpha-adrenergic agonist phenylephrine and antagonist phentolamine had no effect on colonic motility. Isoproterenol inhibited colonic smooth muscle spike and contractile activity. This effect was blocked by propranolol. Administration of trimethaphan camsylate caused an increase in spike and contractile activity only in the distal colon. The effect of trimethaphan on the distal colon was inhibited by atropine. These studies show that 1) tonic cholinergic stimulation exists both in the proximal and in the distal colon, 2) circulating catecholamines have minimal effect on base-line colonic motility, and 3) tonic nonadrenergic inhibition of the distal colon modulates the tonic cholinergic stimulation.


1994 ◽  
Vol 266 (6) ◽  
pp. G1083-G1089 ◽  
Author(s):  
J. R. Del Castillo ◽  
M. C. Sulbaran-Carrasco ◽  
L. Burguillos

K+ transport mechanisms in epithelial cells isolated from guinea pig distal colon have been studied using 86Rb as a tracer. A transport pathway has been identified that is proposed to be identical to the mechanism mediating transepithelial K+ absorption. Guinea pig colonocytes take up K+ through at least three separate mechanisms: 1) a Na(+)-dependent, ouabain-sensitive influx that is consistent with the Na(+)-K+ pump, 2) a Na(+)-dependent bumetanide-sensitive influx consistent with the Na(+)-K(+)-2Cl- cotransporter, and 3) a Na(+)-independent ouabain-sensitive influx, consistent with an apical colonic K+ pump. These transport mechanisms are sensitive to metabolic inhibition by rotenone and to vanadate, a blocker of type P adenosinetriphosphatase (ATPases). SCH-28080, an inhibitor of gastric K(+)-H(+)-ATPase, was without effect. Measurements of net K+ fluxes revealed that isolated colonocytes concentrated K+ by two processes: 1) a Na(+)-dependent ouabain-sensitive mechanism, which is compatible with the Na(+)-K+ pump and 2) a Na(+)-independent ouabain-sensitive mechanism consistent with the proposed absorptive K+ pump. These concentrative mechanisms were also inhibited by rotenone and vanadate, but not by SCH-28080. The Na(+)-independent ouabain-sensitive K+ pump was present in the distal colon, but absent in the proximal colon and the small intestine of guinea pig. It is proposed that this Na(+)-independent ouabain-sensitive K+ pump mediates K+ absorption and is related to the luminal K(+)-ATPase.


2007 ◽  
Vol 292 (4) ◽  
pp. G1037-G1044 ◽  
Author(s):  
Yukiomi Nakade ◽  
Hiroyuki Fukuda ◽  
Masahiro Iwa ◽  
Kiyoshi Tsukamoto ◽  
Hidenori Yanagi ◽  
...  

Although restraint stress accelerates colonic transit via a central corticotropin-releasing factor (CRF), the precise mechanism still remains unclear. We tested the hypothesis that restraint stress and central CRF stimulate colonic motility and transit via a vagal pathway and 5-HT3 receptors of the proximal colon in rats. 51Cr was injected via the catheter positioned in the proximal colon to measure colonic transit. The rats were subjected to a restraint stress for 90 min or received intracisternal injection of CRF. Ninety minutes after the administration of 51Cr, the entire colon was removed, and the geometric center (GC) was calculated. Four force transducers were sutured on the proximal, mid, and distal colon to record colonic motility. Restraint stress accelerated colonic transit (GC of 6.7 ± 0.4, n = 6) compared with nonrestraint controls (GC of 5.1 ± 0.2, n = 6). Intracisternal injection of CRF (1.0 μg) also accelerated colonic transit (GC of 7.0 ± 0.2, n = 6) compared with saline-injected group (GC of 4.6 ± 0.5, n = 6). Restraint stress-induced acceleration of colonic transit was reduced by perivagal capsaicin treatment. Intracisternal injection of CRF antagonists (10 μg astressin) abolished restraint stress-induced acceleration of colonic transit. Stimulated colonic transit and motility induced by restraint stress and CRF were significantly reduced by the intraluminal administration of 5-HT3 antagonist ondansetron (5 × 10−6 M; 1 ml) into the proximal colon. Restraint stress and intracisternal injection of CRF significantly increased the luminal content of 5-HT of the proximal colon. It is suggested that restraint stress stimulates colonic motility via central CRF and peripheral 5-HT3 receptors in conscious rats.


1990 ◽  
Vol 258 (4) ◽  
pp. G506-G511 ◽  
Author(s):  
T. Watanabe ◽  
T. Suzuki ◽  
Y. Suzuki

We have previously shown that an ouabain-sensitive H(+)-K+ exchange mechanism may be present in the apical membrane of guinea pig distal colon [Y. Suzuki and K. Kaneko. Am. J. Physiol. 256 (Gastrointest. Liver Physiol. 19): G979-G988, 1989]. The present study is aimed to demonstrate the presence of an ATPase responsible for this exchange. ATPase activity was determined in the crude membrane fraction of the colonic epithelial cell homogenate. ATPase activity under Na(+)-free conditions was increased by the addition of K+, with a half-maximal effect at 55 microM. This increase was completely abolished by 1 mM ouabain, suggesting the presence of an ouabain-sensitive K(+)-ATPase. The ouabain-sensitive K(+)-ATPase activity was inhibited by vanadate (100 microM) and N,N'-dicyclohexylcarbodiimide (100 microM) but was resistant to oligomycin (4.5 micrograms/ml) and NaN3 (1 mM). The ouabain-sensitive K(+)-ATPase activity was observed in the distal but not in the proximal colon, whereas Na(+)-K(+)-ATPase activity was distributed along the entire colon. Omeprazole (40 microM) reduced the colonic K(+)-ATPase activity by 31 +/- 6%, whereas it reduced the gastric K(+)-ATPase activity by 78 +/- 8%. These results suggest that the ouabain-sensitive K(+)-ATPase as demonstrated here is responsible for the colonic H(+)-K+ exchange. This ATPase could be similar to but is not identical with either Na(+)-K(+)-ATPase or gastric H(+)-K(+)-ATPase.


2006 ◽  
Vol 290 (2) ◽  
pp. G285-G292 ◽  
Author(s):  
Masahiro Iwa ◽  
Megumi Matsushima ◽  
Yukiomi Nakade ◽  
Theodore N. Pappas ◽  
Mineko Fujimiya ◽  
...  

Acupuncture is useful for functional bowel diseases, such as constipation and diarrhea. However, the mechanisms of beneficial effects of acupuncture on colonic function have scarcely ever been investigated. We tested the hypothesis that electroacupuncture (EA) at ST-36 stimulates colonic motility and transit via a parasympathetic pathway in conscious rats. Hook-shaped needles were inserted at bilateral ST-36 (lower limb) or BL-21 (back) and electrically stimulated at 10 Hz for 20 min. We also studied c-Fos expression in response to EA at ST-36 in Barrington's nucleus of the pons. EA at ST-36, but not BL-21, significantly increased the amplitude of motility at the distal colon. The calculated motility index of the distal colon increased to132 ± 9.9% of basal levels ( n = 14, P < 0.05). In contrast, EA at ST-36 had no stimulatory effects in the proximal colon. EA at ST-36 significantly accelerated colonic transit [geometric center (GC) = 6.76 ± 0.42, n = 9, P < 0.001] compared with EA at BL-21 (GC = 5.23 ± 0.39, n = 7). The stimulatory effect of EA at ST-36 on colonic motility and transit was abolished by pretreatment with atropine. EA-induced acceleration of colonic transit was also abolished by extrinsic nerve denervation of the distal colon (GC = 4.69 ± 0.33, n = 6). The number of c-Fos-immunopositive cells at Barrington's nucleus significantly increased in response to EA at ST-36 to 8.1 ± 1.1 cells/section compared with that of controls (2.4 ± 0.5 cells/section, n = 3, P < 0.01). It is concluded that EA at ST-36 stimulates distal colonic motility and accelerates colonic transit via a sacral parasympathetic efferent pathway (pelvic nerve). Barrington's nucleus plays an important role in mediating EA-induced distal colonic motility in conscious rats.


Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1382
Author(s):  
Olga Martyna Koper-Lenkiewicz ◽  
Violetta Dymicka-Piekarska ◽  
Anna Justyna Milewska ◽  
Justyna Zińczuk ◽  
Joanna Kamińska

The aim of the study was the evaluation whether in primary colorectal cancer (CRC) patients (n = 55): age, sex, TNM classification results, WHO grade, tumor location (proximal colon, distal colon, rectum), tumor size, platelet count (PLT), mean platelet volume (MPV), mean platelet component (MCP), levels of carcinoembryonic antigen (CEA), cancer antigen (CA 19-9), as well as soluble lectin adhesion molecules (L-, E-, and P-selectins) may influence circulating inflammatory biomarkers: IL-6, CRP, and sCD40L. We found that CRP concentration evaluation in routine clinical practice may have an advantage as a prognostic biomarker in CRC patients, as this protein the most comprehensively reflects clinicopathological features of the tumor. Univariate linear regression analysis revealed that in CRC patients: (1) with an increase in PLT by 10 × 103/μL, the mean concentration of CRP increases by 3.4%; (2) with an increase in CA 19-9 of 1 U/mL, the mean concentration of CRP increases by 0.7%; (3) with the WHO 2 grade, the mean CRP concentration increases 3.631 times relative to the WHO 1 grade group; (4) with the WHO 3 grade, the mean CRP concentration increases by 4.916 times relative to the WHO 1 grade group; (5) with metastases (T1-4N+M+) the mean CRP concentration increases 4.183 times compared to non-metastatic patients (T1-4N0M0); (6) with a tumor located in the proximal colon, the mean concentration of CRP increases 2.175 times compared to a tumor located in the distal colon; (7) in patients with tumor size > 3 cm, the CRP concentration is about 2 times higher than in patients with tumor size ≤ 3 cm. In the multivariate linear regression model, the variables that influence the mean CRP value in CRC patients included: WHO grade and tumor localization. R2 for the created model equals 0.50, which indicates that this model explains 50% of the variance in the dependent variable. In CRC subjects: (1) with the WHO 2 grade, the mean CRP concentration rises 3.924 times relative to the WHO 1 grade; (2) with the WHO 3 grade, the mean CRP concentration increases 4.721 times in relation to the WHO 1 grade; (3) with a tumor located in the rectum, the mean CRP concentration rises 2.139 times compared to a tumor located in the distal colon; (4) with a tumor located in the proximal colon, the mean concentration of CRP increases 1.998 times compared to the tumor located in the distal colon; if other model parameters are fixed.


Sign in / Sign up

Export Citation Format

Share Document