Su1549 - Hepatic Steatosis is Associated with Markers of Inflammation and Oxidative Stress in a Community Cohort without Pre-Selection for Clinical Liver Disease

2018 ◽  
Vol 154 (6) ◽  
pp. S-1175
Author(s):  
Zachary Fricker ◽  
Allison Pedley ◽  
Joseph Massaro ◽  
Ramachandran Vasan ◽  
Udo Hoffmann ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Polyana C. Marinho ◽  
Aline B. Vieira ◽  
Priscila G. Pereira ◽  
Kíssila Rabelo ◽  
Bianca T. Ciambarella ◽  
...  

Nonalcoholic fatty liver disease (NAFLD) is recognized as the most common cause of liver dysfunction worldwide and is commonly associated with obesity. Evidences suggest that NAFLD might be a mitochondrial disease, which contributes to the hepatic steatosis, oxidative stress, cytokine release, and cell death. Capybara oil (CO) is a rich source of polyunsaturated fatty acids (PUFA), which is known to improve inflammation and oxidative stress. In order to determine the effects of CO on NAFLD, C57Bl/6 mice were divided into 3 groups and fed a high-fat diet (HFD) (NAFLD group and NAFLD + CO group) or a control diet (CG group) during 16 weeks. The CO (1.5 g/kg/daily) was administered by gavage during the last 4 weeks of the diet protocol. We evaluated plasma liver enzymes, hepatic steatosis, and cytokine expression in liver as well as hepatocyte ultrastructural morphology and mitochondrial function. CO treatment suppressed hepatic steatosis, attenuated inflammatory response, and decreased plasma alanine aminotransferase (ALT) in mice with NAFLD. CO was also capable of restoring mitochondrial ultrastructure and function as well as balance superoxide dismutase and catalase levels. Our findings indicate that CO treatment has positive effects on NAFLD improving mitochondrial dysfunction, steatosis, acute inflammation, and oxidative stress.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1175
Author(s):  
Johanna Helmstädter ◽  
Karin Keppeler ◽  
Franziska Aust ◽  
Leonie Küster ◽  
Katie Frenis ◽  
...  

Sepsis causes high mortality in the setting of septic shock. LEADER and other trials revealed cardioprotective and anti-inflammatory properties of glucagon-like peptide-1 (GLP-1) analogs like liraglutide (Lira). We previously demonstrated improved survival in lipopolysaccharide (LPS)-induced endotoxemia by inhibition of GLP-1 degradation. Here we investigate the effects of Lira in the polymicrobial sepsis model of cecal ligation and puncture (CLP). C57BL/6J mice were intraperitoneally injected with Lira (200 µg/kg/d; 3 days) and sepsis induced by CLP after one day of GLP-1 analog treatment. Survival and body temperature were monitored. Aortic vascular function (isometric tension recording), protein expression (immunohistochemistry and dot blot) and gene expression (qRT-PCR) were determined. Endothelium-dependent relaxation in the aorta was impaired by CLP and correlated with markers of inflammation (e.g., interleukin 6 and inducible nitric oxide synthase) and oxidative stress (e.g., 3-nitrotyrosine) was higher in septic mice, all of which was almost completely normalized by Lira therapy. We demonstrate that the GLP-1 analog Lira ameliorates sepsis-induced endothelial dysfunction by the reduction of vascular inflammation and oxidative stress. Accordingly, the findings suggest that the antioxidant and anti-inflammatory effects of GLP-1 analogs may be a valuable tool to protect the cardiovascular system from dysbalanced inflammation in polymicrobial sepsis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mihiri Goonetilleke ◽  
Nathan Kuk ◽  
Jeanne Correia ◽  
Alex Hodge ◽  
Gregory Moore ◽  
...  

Abstract Background Non-alcoholic fatty liver disease is the most common liver disease globally and in its inflammatory form, non-alcoholic steatohepatitis (NASH), can progress to cirrhosis and hepatocellular carcinoma (HCC). Currently, patient education and lifestyle changes are the major tools to prevent the continued progression of NASH. Emerging therapies in NASH target known pathological processes involved in the progression of the disease including inflammation, fibrosis, oxidative stress and hepatocyte apoptosis. Human amniotic epithelial cells (hAECs) were previously shown to be beneficial in experimental models of chronic liver injury, reducing hepatic inflammation and fibrosis. Previous studies have shown that liver progenitor cells (LPCs) response plays a significant role in the development of fibrosis and HCC in mouse models of fatty liver disease. In this study, we examined the effect hAECs have on the LPC response and hepatic oxidative stress in an experimental model of NASH. Methods Experimental NASH was induced in C57BL/6 J male mice using a high-fat, high fructose diet for 42 weeks. Mice received either a single intraperitoneal injection of 2 × 106 hAECs at week 34 or an additional hAEC dose at week 38. Changes to the LPC response and oxidative stress regulators were measured. Results hAEC administration significantly reduced the expansion of LPCs and their mitogens, IL-6, IFNγ and TWEAK. hAEC administration also reduced neutrophil infiltration and myeloperoxidase production with a concurrent increase in heme oxygenase-1 production. These observations were accompanied by a significant increase in total levels of anti-fibrotic IFNβ in mice treated with a single dose of hAECs, which appeared to be independent of c-GAS-STING activation. Conclusions Expansion of liver progenitor cells, hepatic inflammation and oxidative stress associated with experimental NASH were attenuated by hAEC administration. Given that repeated doses did not significantly increase efficacy, future studies assessing the impact of dose escalation and/or timing of dose may provide insights into clinical translation.


2001 ◽  
Vol 281 (5) ◽  
pp. G1135-G1139 ◽  
Author(s):  
Graham Robertson ◽  
Isabelle Leclercq ◽  
Geoffrey C. Farrell

Oxidative stress is present in the liver of humans with steatosis and nonalcoholic steatohepatitis (NASH) and is a plausible mediator of cellular injury, inflammatory recruitment, and fibrogenesis. CYPs 2E1 and 4A are the microsomal oxidases involved with fatty acid oxidation. Both enzymes can reduce molecular oxygen to produce prooxidant species, which, if not countered efficiently by antioxidants, create oxidative stress. In this theme article, we present the evidence that, in the context of hepatic steatosis, CYPs 2E1 and 4A could generate the “second hit” of cellular injury, particularly when antioxidant reserves are depleted, and propose ways in which this could contribute to the pathogenesis of NASH.


Sign in / Sign up

Export Citation Format

Share Document