450 CLONAL DYNAMICS AND CELL-OF-ORIGIN OF NORMAL HEPATOCYTE EXPANSIONS IN HOMEOSTATIC HUMAN LIVERS AND THEIR ASSOCIATION WITH THE BILIARY EPITHELIUM

2020 ◽  
Vol 158 (6) ◽  
pp. S-1276
Author(s):  
Adam M. Passman ◽  
Magnus J. Haughey ◽  
Emanuela Carlotti ◽  
Mark Williams ◽  
Biancastella Cereser ◽  
...  
1992 ◽  
Vol 40 (11) ◽  
pp. 1627-1635 ◽  
Author(s):  
T Terada ◽  
N Kono ◽  
Y Nakanuma

The expression and localization of the pancreatic and salivary isozymes of alpha-amylase in the intrahepatic biliary epithelium and hepatocytes were examined by the immunohistochemical method with polyclonal and monoclonal antibodies in 45 normal autopsied human livers. Immunoelectron microscopic studies with the protein A-gold method were performed with the monoclonal antibodies (MAb) on seven of the livers. The intrahepatic biliary system was divided into large ducts, septal ducts, interlobular ducts, bile ductules, and peribiliary glands. Immunohistochemically, pancreatic isozyme was observed in the supranuclear cytoplasm of the epithelium of large ducts, septal ducts, and peribiliary glands in almost all livers. Interlobular ducts expressed pancreatic isozyme in only four (9%) livers. Bile ductules and hepatocytes were negative for pancreatic isozyme in all cases. Expression of salivary isozyme was observed in the supranuclear cytoplasm of the epithelium of large ducts, septal ducts, interlobular ducts, bile ductules, and peribiliary glands in almost all livers, although the expression in interlobular ducts and bile ductules was weak. Hepatocytes were weakly positive for salivary isozyme. Immunoelectron microscopy revealed that both pancreatic and salivary isozymes were located in the supranuclear cytoplasm of the epithelium of large ducts, septal ducts, and peribiliary glands, and that hepatocytes had no pancreatic isozyme but contained salivary isozyme. These data suggest that pancreatic and salivary isozymes of alpha-amylase are produced by the intrahepatic biliary epithelium and secreted into intrahepatic biliary lumens, and that they may play an important role in the physiology of the intrahepatic biliary tree and hepatic bile. It is also suggested that hepatocytes produce a small amount of salivary alpha-amylase that may be secreted into the biliary tree.


Science ◽  
2021 ◽  
Vol 371 (6531) ◽  
pp. 839-846 ◽  
Author(s):  
Fotios Sampaziotis ◽  
Daniele Muraro ◽  
Olivia C. Tysoe ◽  
Stephen Sawiak ◽  
Timothy E. Beach ◽  
...  

Organoid technology holds great promise for regenerative medicine but has not yet been applied to humans. We address this challenge using cholangiocyte organoids in the context of cholangiopathies, which represent a key reason for liver transplantation. Using single-cell RNA sequencing, we show that primary human cholangiocytes display transcriptional diversity that is lost in organoid culture. However, cholangiocyte organoids remain plastic and resume their in vivo signatures when transplanted back in the biliary tree. We then utilize a model of cell engraftment in human livers undergoing ex vivo normothermic perfusion to demonstrate that this property allows extrahepatic organoids to repair human intrahepatic ducts after transplantation. Our results provide proof of principle that cholangiocyte organoids can be used to repair human biliary epithelium.


2019 ◽  
Author(s):  
Ricky Tirtakusuma ◽  
Paul Milne ◽  
Anetta Ptasinska ◽  
Claus Meyer ◽  
Sirintra Nakjang ◽  
...  

2004 ◽  
Vol 69 (3) ◽  
pp. 659-673 ◽  
Author(s):  
Petr Hodek ◽  
Tomáš Koblas ◽  
Helena Rýdlová ◽  
Božena Kubíčková ◽  
Miroslav Šulc ◽  
...  

Using chicken antibodies IgY (purified from egg yolks) against mammalian cytochromes P450 and by means of cytochrome P450 marker substrates, we found for the first time the presence of hepatopancreatic cytochrome P450 in crayfishOrconectes limosus(an inducible cytochrome P450 2B-like enzyme) and we were able to detect and quantify cytochrome P450 1A1 in microsomes of human livers. Expression levels of cytochrome P450 1A1 in human livers constituted less than 0.6% of the total hepatic cytochrome P450 complement. The results obtained in our study are clear examples that chicken IgY are suitable for cytochrome P450 detection and quantification. Due to the evolutionary distance, chicken IgY reacts with more epitopes on a mammalian antigen, which gives an amplification of the signal. Moreover, this approach offers many advantages over common mammalian antibody production since chicken egg is an abundant source of antibodies (about 100 mg IgY/yolk) and the egg collection is a non-invasive technique. In the case of antibodies against cytochrome P450 2B4, we documented fast and steady production of highly specific immunoglobulins. Thus, chicken antibodies should be considered as a good alternative to and/or superior substitute for conventional polyclonal antibody produced in mammals.


Sign in / Sign up

Export Citation Format

Share Document