scholarly journals EFFECTS OF NICOTINAMIDE AND INSULIN ON GLYCOSYLATED HEMOGLOBIN AND BLOOD GLUCOSE IN THYROIDECTOMIZED STREPTOZOTOCIN-DIABETIC RATS

1982 ◽  
Vol 32 (5) ◽  
pp. 903-907
Author(s):  
Emiko FUJII ◽  
Fujiko TSUKAHARA ◽  
Teruko NOMOTO
1993 ◽  
Vol 71 (3-4) ◽  
pp. 270-276 ◽  
Author(s):  
Violet G. Yuen ◽  
Chris Orvig ◽  
Katherine H. Thompson ◽  
John H. McNeill

Decreased cardiac function in streptozotocin-diabetic rats has been used as a model of diabetes-induced cardiomyopathy, which is a secondary complication in diabetic patients. The present study was designed to evaluate the therapeutic effect of a new organic vanadium complex, bis(maltolato)oxovanadium(IV), (BMOV), in improving heart function in streptozotocin-diabetic rats. There were four groups of male, Wistar rats: control (C), control treated (CT), diabetic (D), and diabetic treated (DT). Treatment consisted of BMOV, 0.5 mg/mL (1.8 mM) for the first 3 weeks and 0.75 mg/mL (2.4 mM) for the next 22 weeks, in the drinking water of rats allowed ad libitum access to food and water. BMOV lowered blood glucose to < 9 mM in 70% of DT animals without any increase in plasma insulin levels, and mean blood glucose and plasma lipid levels were significantly lower in DT vs. D rats. Tissue vanadium levels were measured in plasma, bone, kidney, liver, muscle, and fat of BMOV-treated rats. Plasma vanadium levels averaged 0.84 ± 0.07 μg/mL (16.8 μM) in CT rats and 0.76 ± 0.05 μg/mL (15.2 μM) in DT animals. The highest vanadium levels at termination of this chronic feeding study were in bone, 18.3 ± 3.0 μg/g (0.37 μmol/g) in CT and 26.4 ± 2.6 μg/g (0.53 μmol/g) in DT rats, with intermediate levels in kidney and liver, and low, but detectable levels in muscle and fat. There were no deaths in either the CT or DT group, and no overt signs of vanadium toxicity were present. Tissue vanadium levels were not correlated with the glucose-lowering effect. Isolated working heart parameters of left ventricular developed pressure (LVDP) and rate of pressure development (+dP/dT, and −dP/dT) indicated that BMOV treatment resulted in significant correction of the heart dysfunction associated with streptozotocin-induced diabetes in rat.Key words: bis(maltolato)oxovanadium(IV), vanadium, diabetes, streptozotocin, myocardial dysfunction.


2020 ◽  
Vol 13 (8) ◽  
pp. 1732-1736
Author(s):  
Mohamed Jamal Saadh

Background and Aim: Despite the availability of antidiabetic drugs, they are not free from associated adverse side effects. This study aimed to evaluate the hypoglycemic and hypolipidemic effects of oral administration of seeds from two medicinal plants: (1) Milk thistle and (2) fenugreek. Materials and Methods: Plant seeds were washed in distilled water and ground with a coffee grinder. Alloxan was used to induce diabetes in 20 male albino rats. Diabetic rats were randomly divided into two groups: (1) Group 1 (n=10), diabetic rats fed with 0.5 g/kg milk thistle and 2 g/kg fenugreek seeds per day and (2) Group 2 (n=10), diabetic rats fed standard rodent food for 4 weeks. Results: Oral administration of milk thistle and fenugreek seeds for 2 weeks resulted in significant improvement in body weight, blood glucose, glycosylated hemoglobin (HbA1c), cholesterol, and triglyceride levels in alloxan-induced diabetic rats. After 4 weeks, this ameliorative effect was significantly elevated with respect to blood glucose (155.00±9.70 mg/ dL vs. 427.50±5.70 mg/dL; p<0.001), HbA1c (5.5±0.19% vs. 13.65±1.77%; p<0.001), cholesterol (281.50±10.95 mg/dL vs. 334.30±6.80 mg/dL; p<0.001), triglyceride (239.60±6.87 mg/dL vs. 284.20±9.95 mg/dL; p<0.01), and body weight (265.30±8.10 g vs. 207.40±11.4 g; p<0.01) as compared with non-treated diabetic rats. Conclusion: Milk thistle and fenugreek seeds possess hypoglycemic and hypolipidemic properties and could be used as natural compounds that are suitable as parent compounds for the development of new antidiabetic drugs.


Sign in / Sign up

Export Citation Format

Share Document