scholarly journals Species-specific binding of sperm proteins to the extracellular matrix (zona pellucida) of the egg.

1994 ◽  
Vol 269 (29) ◽  
pp. 19000-19004 ◽  
Author(s):  
D.M. Hardy ◽  
D.L. Garbers
Reproduction ◽  
2006 ◽  
Vol 132 (3) ◽  
pp. 455-464 ◽  
Author(s):  
Akiko Hasegawa ◽  
Nozomi Kanazawa ◽  
Hideaki Sawai ◽  
Shinji Komori ◽  
Koji Koyama

The zona pellucida, an extracellular matrix surrounding mammalian oocytes, is composed of three or four glycoproteins. It is well known that the zona pellucida plays several critical roles during fertilization, but there is little knowledge about its formation. The purpose of this study is to examine whether a pig zona pellucida glycoprotein 2 (pZP2) would assemble with mouse zona pellucida. A transgene construct was prepared by placing a minigene encoding pZP2 downstream from the promoter of mouse ZP2. The result showed that the transgenic protein was synthesized in growing oocytes but not incorporated into the zona pellucida. Furthermore, the pZP2 transgene did not rescue the phenotype in ZP2-knockout zona-deficient mice. These results indicate that pZP2 does not participate in mouse zona pellucida formation and the zona pellucida is constituted from its component proteins in a molecular species-specific manner between mice and pigs.


Zygote ◽  
1993 ◽  
Vol 1 (2) ◽  
pp. 121-127 ◽  
Author(s):  
Akira Ushiyama ◽  
Takeo Araki ◽  
Kazuyoshi Chiba ◽  
Motonori Hoshi

In the starfish, spermatozoa undergo the acrosome reaction upon encountering the jelly coat of eggs. A highly sulphated glycoprotein in the jelly coat is called acrosome-reaction-inducing substance (ARIS) because it is the key signal molecule to trigger the acrosome reaction. The activity of ARIS is mainly attributed to its sulphate and saccharide residues. The extremely large molecular size and speciesspecific action of ARIS suggest the presence of a specific ARIS receptor on the sperm surface, but no experimental evidence for the receptor has been presented. We therefore measured specific binding of ARIS and its pronase digest (P-ARIS), which retains the full activity of ARIS, to homologous spermatozoa by using fluorescien-isothiocyanate-labelled ARIS and125 I-labelled P-ARIS, respectively. The spermatozoa had the ability to bind ARIS, as well as P-ARIS, specifically. The binding was species-specific, and mostly localised to the head region of spermatozoa. Scatchard plot analysis indicated the presence of one class of ARIS receptor on the surface of acrosome-intact speramatozoa. Furthermore, the specific binding of P-ARIS to the anterior region of sperm heads was microscopically confirmed by using P-ARIS conjugated to polystyrene latex beads with intense fluorescence. It is concluded that starfish spermatozoa have a specific receptor for ARIS on the surface of the anterior region of heads.


Toxicology ◽  
2007 ◽  
Vol 233 (1-3) ◽  
pp. 238
Author(s):  
R. Bogan ◽  
H. Thiermann ◽  
L. Szinicz

2021 ◽  
Vol 21 ◽  
Author(s):  
Naina Kumar ◽  
Namit Kant Singh

: Male infertility is rising now-a-days and accounts for major part of infertility cases worldwide. Novel tests are being developed for better detection and management of male infertility. Though there are many tests available for diagnosing male infertility like acrosome reaction rate, hemizona assay, in vivo or in vitro sperm penetration assay, sperm DNA damage tests, but semen analysis is most commonly used initial test for male infertility. It is usually associated with failure to detect cause in many cases, as seminal composition gets affected by a number of factors and can give false reports. Furthermore, it does not give any information about defects in capacitation, sperm Zona Pellucida interaction and sperm’s ability to fertilize oocytes. This results in failure of detection and delayed management of male infertility. Hence, the present review was conducted to identify various sperm proteins that play significant role in spermatogenesis, sperm motility, sperm-Zona Pellucida interaction and fertilization. These proteins can be used in future as markers of male infertility and will aid in better detection and management of male infertility. Methodology: Search for literature was made from 1970 to 2020 from various databases like PUBMED, SCOPUS, Google Scholar on sperm proteins and their role in male fertility using keywords: “sperm protein as bio-markers”, “novel sperm proteins as markers of infertility”, “Sperm proteins essential for capacitation, sperm motility and oocyte fertilization”. Inclusion criteria: All full-length research articles, systematic reviews, meta-analysis or abstracts on sperm proteins and male infertility published in English language in peer-reviewed journals were considered.


Development ◽  
1990 ◽  
Vol 108 (1) ◽  
pp. 1-17 ◽  
Author(s):  
P.M. Wassarman

Complementary molecules on the surface of eggs and sperm are responsible for species-specific interactions between gametes during fertilization in both plants and animals. In this essay, several aspects of current research on the mouse egg receptor for sperm, a zona pellucida glycoprotein called ZP3, are addressed. These include the structure, synthesis, and functions of the sperm receptor during oogenesis and fertilization in mice. Several conclusions are drawn from available information. These include (I) ZP3 is a member of a unique class of glycoproteins found exclusively in the extracellular coat (zona pellucida) of mammalian eggs. (II) ZP3 gene expression is an example of oocyte-specific and, therefore, sex-specific gene expression during mammalian development. (III) ZP3 is a structural glycoprotein involved in assembly of the egg extracellular coat during mammalian oogenesis. (IV) ZP3 is a sperm receptor involved in carbohydrate-mediated gamete recognition and adhesion during mammalian fertilization. (V) ZP3 is an inducer of sperm exocytosis (acrosome reaction) during mammalian fertilization. (VI) ZP3 participates in the secondary block to polyspermy following fertilization in mammals. (VII) The extracellular coat of other mammalian eggs contains a glycoprotein that is functionally analogous to mouse ZP3. The unique nature, highly restricted expression, and multiple roles of ZP3 during mammalian development make this glycoprotein a particularly attractive subject for investigation at both the cellular and molecular levels.


1984 ◽  
Vol 4 (2) ◽  
pp. 221-227 ◽  
Author(s):  
R Miesfeld ◽  
N Arnheim

RNA polymerase I transcription factors were purified from HeLa and mouse L cell extracts by phosphocellulose chromatography. Three fractions from each species were found to be required for transcription. One of these fractions, virtually devoid of RNA polymerase I activity, was found to form a stable preinitiation complex with small DNA fragments containing promoter sequences from the homologous but not the heterologous species. These species-specific DNA-binding factors can explain nucleolar dominance in vivo in mouse-human hybrid somatic cells and species specificity in cell-free, RNA polymerase I-dependent transcription systems. The evolution of species-specific transcriptional control signals may be the natural outcome of a special relationship that exists between the RNA polymerase I transcription machinery and the multigene family coding for rRNA.


1990 ◽  
Vol 123 (3) ◽  
pp. 345-352 ◽  
Author(s):  
V. Papapdopoulos ◽  
P. Kamtchouing ◽  
N. Boujrad ◽  
C. Pisselet ◽  
C. Perreau ◽  
...  

Abstract. Intracellular cyclic AMP and testosterone productions by purified mature rat Leydig cells were stimulated by oLH (25 μg/l) 18- and 12-fold, respectively, after a 5-h incubation period. The replacement of the incubation medium by charcoal-treated testicular venous plasma (40%, v/v) from adult rams in the breeding season induced an inhibition of cyclic AMP and testosterone productions (82 and 66%, respectively, of oLH-stimulated values). Testicular arterial plasma is less effective than testicular venous plasma, even when it originates from non-breeding season rams; in that case, testicular venous and arterial plasma strongly inhibit testosterone productions (84 and 67%, respectively of oLH-stimulated values), which probably indicates that the inhibitory activity is higher in the non-breeding season. The addition of peripheral plasma leads to a testosterone production equal to 35 and 65% of the oLH-stimulated values, respectively, for ram blood collected in non-breeding and breeding seasons. The same concentration of ovine testicular lymph or rete testis fluid is without significant effect on cyclic AMP production; however, testosterone is slightly decreased by lymph but enhanced by rete testis fluid. Increasing amounts of venous or arterial testicular blood induce a dose-related decrease of the specific binding of labelled hCG in both rat and ram testicular membranes. This inhibiting factor is present in peripheral and testicular blood of either control or hypophysectomized or castrated rams, is a protein in nature, heat-sensitive, and has an apparent molecular weight higher than 10 000 daltons. These results suggest the existence of a control of LH-specific binding to its receptors and of Leydig cell cyclic AMP and testosterone outputs; these activities are not species-specific and are more concentrated in testicular venous than in arterial blood. The origin of this inhibiting factor remains to be determined, since it is not confined to the testis and not of pituitary origin.


1983 ◽  
Vol 60 (1) ◽  
pp. 89-102
Author(s):  
D de Bono ◽  
C. Green

The interactions between human or bovine vascular endothelial cells and fibroblast-like vascular intimal spindle-shaped cells have been studied in vitro, using species-specific antibodies to identify the different components in mixed cultures. Pure cultures of endothelial cells grow as uniform, nonoverlapping monolayers, but this growth pattern is lost after the addition of spindle cells, probably because the extracellular matrix secreted by the latter causes the endothelial cells to modify the way they are attached to the substrate. The result is a network of tubular aggregates of endothelial cells in a three-dimensional ‘polylayer’ of spindle-shaped cells. On the other hand, endothelial cells added to growth-inhibited cultures of spindle-shaped cells will grow in sheets over the surface of the culture. Human endothelial cells grown in contact with spindle-shaped cells have a reduced requirement for a brain-derived endothelial growth factor. The interactions of endothelial cells and other connective tissue cells in vitro may be relevant to the mechanisms of endothelial growth and blood vessel formation in vivo, and emphasize the potential importance of extracellular matrix in controlling endothelial cell behaviour.


Sign in / Sign up

Export Citation Format

Share Document