scholarly journals Simultaneous expression of skeletal muscle and heart actin proteins in various striated muscle tissues and cells. A quantitative determination of the two actin isoforms.

1986 ◽  
Vol 261 (4) ◽  
pp. 1838-1843 ◽  
Author(s):  
J Vandekerckhove ◽  
G Bugaisky ◽  
M Buckingham
2000 ◽  
Vol 6 (S2) ◽  
pp. 852-853
Author(s):  
Glenn M. Cohen ◽  
Margaret F. Scott

Striated skeletal muscle has been considered radioresistant because it is highly differentiated and post-mitotic. Striated muscle does, however, respond to irradiation with morphological and biochemical changes after short and long latency periods; vascular and/or neurological impairments might contribute to the delayed responses to irradiation.The objective of the present study was to determine the susceptibility of three amphibian muscle fiber types to Co60 irradiation. In amphibians, the three major fiber types are 1) large twitch fibers, which contain low levels of mitochondrial enzymes and lipids, but intermediate levels of glycogen; 2) small twitch fibers, which contain high levels of both glycolytic and mitochondrial enzymes (FIG. 1); and tonic fibers, which contain low levels of all three histochemical markers. Thus, the determination of susceptibility of different amphibian fiber types to irradiation might indicate whether the metabolic characteristics of the fibers, rather than morphological or electrical properties, could serve as an early indicator of radiation damage.


1986 ◽  
Vol 238 (2) ◽  
pp. 523-530 ◽  
Author(s):  
M S Lim ◽  
M P Walsh

We studied the effects of caldesmon, a major actin- and calmodulin-binding protein found in a variety of muscle and non-muscle tissues, on the various ATPase activities of skeletal-muscle myosin. Caldesmon inhibited the actin-activated myosin Mg2+-ATPase, and this inhibition was enhanced by tropomyosin. In the presence of the troponin complex and tropomyosin, caldesmon inhibited the Ca2+-dependent actomyosin Mg2+-ATPase; this inhibition could be partly overcome by Ca2+/calmodulin. Caldesmon, phosphorylated to the extent of approximately 4 mol of Pi/mol of caldesmon, inhibited the actin-activated myosin Mg2+-ATPase to the same extent as did non-phosphorylated caldesmon. Both inhibitions could be overcome by Ca2+/calmodulin. Caldesmon also inhibited the Mg2+-ATPase activity of skeletal-muscle myosin in the absence of actin; this inhibition also could be overcome by Ca2+/calmodulin. Caldesmon inhibited the Ca2+-ATPase activity of skeletal-muscle myosin in the presence or absence of actin, at both low (0.1 M-KCl) and high (0.3 M-KCl) ionic strength. Finally, caldesmon inhibited the skeletal-muscle myosin K+/EDTA-ATPase at 0.1 M-KCl, but not at 0.3 M-KCl. Addition of actin resulted in no inhibition of this ATPase by caldesmon at either 0.1 M- or 0.3 M-KCl. These observations suggest that caldesmon may function in the regulation of actin-myosin interactions in striated muscle and thereby modulate the contractile state of the muscle. The demonstration that caldesmon inhibits a variety of myosin ATPase activities in the absence of actin indicates a direct effect of caldesmon on myosin. The inhibition of the actin-activated Mg2+-ATPase activity of myosin (the physiological activity) may not be due therefore simply to the binding of caldesmon to the actin filament causing blockage of myosin-cross-bridge-actin interaction.


Author(s):  
Dario Coletti ◽  
Nissrine Daou ◽  
Medhi Hassani ◽  
Zhenlin Li ◽  
Ara Parlakian

Skeletal, cardiac and smooth muscle cells share various common characteristic features. During development the embryonic mesodermal layer contribute at different proportions to the formation of these tissues. At the functional level, contractility as well as its decline during ageing, are also common features. Cytoskeletal components of these tissues are characterized by various actin isoforms that govern through their status (polymerised versus monomeric) and their interaction with the myosins the contractile properties of these muscles. Finally, at the molecular level, a set of different transcription factors with the notable exception of Serum Response Factor SRF- which is commonly enriched in the 3 types of muscle- drive and maintain the differentiation of these cells (Myf5, MyoD, Myogenin for skeletal muscle; Nkx2.5, GATA4 for cardiomyocytes). In this review, we will focus on the transcription factor SRF and its role in the homeostasis of cardiac, smooth and skeletal muscle tissues as well as its behaviour during the age related remodelling process of these tissues with a specific emphasis on animal models and human data when available.


1986 ◽  
Vol 6 (8) ◽  
pp. 741-747 ◽  
Author(s):  
David P. Leader ◽  
Irene Gall ◽  
Paul C. Campbell

A cDNA library was constructed from mouse cardiac muscle mRNA, and a clone corresponding to part of the mRNA for the cardiac muscle isoform of actin was isolated from this library. The nucleotide sequence of the cloned insert was determined and was found to contain almost the complete amino acid coding region for actin (only codons for the first two amino acids, absent from the mature protein, were lacking) and a substantial portion derived from the 3′ untranslated region of the mRNA. Comparison of the latter with the corresponding region in cardiac actin mRNA from man and rat showed that this 3′ untranslated region has been subject to conservational pressure during evolution. However a comparison with the corresponding region in skeletal muscle actin mRNAs indicated that the pattern of conservation is quite different in the two striated muscle actin isoforms.


2017 ◽  
Vol 64 (2) ◽  
pp. 105
Author(s):  
G. D. BRELLOU (Γ.Δ. ΜΠΡΕΛΛΟΥ) ◽  
V. PSYCHAS (Β. ΨΥΧΑΣ) ◽  
I. VLEMMAS (Ι. ΒΛΕΜΜΑΣ)

Primary rhabdomyosarcomas are rare in dogs. Based on their classification, embryonal rhabdomyosarcoma is the most common, while alveolar and especially pleomorphic types occur less often. Four cases diagnosed as primary canine rhabdomyosarcomas of striated muscles were retrieved from our files. All the animals were cross-breeds, aged over 8 years. Two of them had died after developing disseminated intravascular coagulation and gastric ulcer, respectively, and two others were euthanized. Of those two, one had been admitted with neurological and cardiovascular symptoms and one with disseminated intravascular coagulation. Necropsy was performed and tissue samples were collected for histological and immunohistochemical examination. The first case was diagnosed as mixed rhabdomyosarcoma, pleomorphic type in the heart and the diaphragm and alveolar type in the lungs and the spleen. The three other cases were of alveolar type. One showed primary cardiac and oesophageal origin, with metastases in the skeletal muscles and non striated muscle tissues, one had primary cardiac, with mitral valve involvement, and skeletal muscle origin, with metastases in extra striated muscle tissues and one showed only skeletal muscle localization. Immunohistochemical examination revealed myoglobin and α-sarcomeric actin in tumour cells.


2015 ◽  
Vol 147 (1) ◽  
pp. 95-102 ◽  
Author(s):  
Cheng Qian ◽  
Robert A. Colvin

The divalent cation chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA), often used to buffer physiological changes in cytosolic Ca2+, also binds Zn2+ with high affinity. In a recently published method (Lamboley et al. 2015. J. Gen. Physiol. http://dx.doi.org/10.1085/jgp.201411250), the absorbance shift of BAPTA at 292 nm was successfully used to determine the total calcium concentrations of various skeletal muscle tissues. In the present study, we show that endogenous Zn2+ in rat skeletal muscle tissue can be unknowingly measured as “Ca2+,” unless appropriate measures are taken to eliminate Zn2+ interference. We analyzed two rat skeletal muscle tissues, soleus and plantaris, for total calcium and zinc using either inductively coupled plasma mass spectrometry (ICP-MS) or the BAPTA method described above. ICP-MS analysis showed that total zinc contents in soleus and plantaris were large enough to affect the determination of total calcium by the BAPTA method (calcium = 1.72 ± 0.31 and 1.96 ± 0.14, and zinc = 0.528 ± 0.04 and 0.192 ± 0.01; mean ± standard error of the mean [SEM]; n = 5; mmole/kg, respectively). We next analyzed total calcium using BAPTA but included the Zn2+-specific chelator N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) that buffers Zn2+ without affecting Ca2+/BAPTA binding. We found that estimated concentrations of total calcium ([CaT]WM) in soleus and plantaris were reduced after TPEN addition ([CaT]WM = 3.71 ± 0.62 and 3.57 ± 0.64 without TPEN and 3.39 ± 0.64 and 3.42 ± 0.62 with TPEN; mean ± SEM; n = 3; mmole/kg, respectively). Thus, we show that a straightforward correction can be applied to the BAPTA method to improve the accuracy of the determination of total calcium that should be applicable to most any tissue studied. In addition, we show that using TPEN in combination with the BAPTA method allows one to make reasonable estimates of total zinc concentration that are in agreement with the direct determination of zinc concentration by ICP-MS.


1999 ◽  
Vol 96 (9/10) ◽  
pp. 1608-1615
Author(s):  
T. E. Malliavin ◽  
H. Desvaux ◽  
M. A. Delsuc

Sign in / Sign up

Export Citation Format

Share Document