scholarly journals A role for Raf-1 in the divergent signaling pathways mediating insulin-stimulated glucose transport

1994 ◽  
Vol 269 (13) ◽  
pp. 10127-10132
Author(s):  
D.C. Fingar ◽  
M.J. Birnbaum
Diabetes ◽  
1998 ◽  
Vol 47 (2) ◽  
pp. 179-185 ◽  
Author(s):  
R. W. Stevenson ◽  
D. K. Kreutter ◽  
K. M. Andrews ◽  
P. E. Genereux ◽  
E. M. Gibbs

1997 ◽  
Vol 8 (7) ◽  
pp. 1293-1304 ◽  
Author(s):  
H Jiang ◽  
I Medintz ◽  
C A Michels

Glucose is a global metabolic regulator in Saccharomyces. It controls the expression of many genes involved in carbohydrate utilization at the level of transcription, and it induces the inactivation of several enzymes by a posttranslational mechanism. SNF3, RGT2, GRR1 and RGT1 are known to be involved in glucose regulation of transcription. We tested the roles of these genes in glucose-induced inactivation of maltose permease. Our results suggest that at least two signaling pathways are used to monitor glucose levels. One pathway requires glucose sensor transcript and the second pathway is independent of glucose transport. Rgt2p, which along with Snf3p monitors extracellular glucose levels, appears to be the glucose sensor for the glucose-transport-independent pathway. Transmission of the Rgt2p-dependent signal requires Grr1p. RGT2 and GRR1 also play a role in regulating the expression of the HXT genes, which appear to be the upstream components of the glucose-transport-dependent pathway regulating maltose permease inactivation. RGT2-1, which was identified as a dominant mutation causing constitutive expression of several HXT genes, causes constitutive proteolysis of maltose permease, that is, in the absence of glucose. A model of these glucose sensing/signaling pathways is presented.


PLoS ONE ◽  
2013 ◽  
Vol 8 (10) ◽  
pp. e76796 ◽  
Author(s):  
Hong-Xia Wang ◽  
Xin-Rui Wu ◽  
Hui Yang ◽  
Chun-Lin Yin ◽  
Li-Jin Shi ◽  
...  

Diabetes ◽  
1998 ◽  
Vol 47 (2) ◽  
pp. 179-185 ◽  
Author(s):  
R. W. Stevenson ◽  
D. K. Kreutter ◽  
K. M. Andrews ◽  
P. E. Genereux ◽  
E. M. Gibbs

2008 ◽  
Vol 295 (5) ◽  
pp. C1071-C1082 ◽  
Author(s):  
Ming Jing ◽  
Vinay K Cheruvu ◽  
Faramarz Ismail-Beigi

AMP-activated protein kinase (AMPK) plays a critical role in the stimulation of glucose transport in response to hypoxia and inhibition of oxidative phosphorylation. In the present study, we examined the signaling pathway(s) mediating the glucose transport response following activation of AMPK. Using mouse fibroblasts of AMPK wild type and AMPK knockout, we documented that the expression of AMPK is essential for the glucose transport response to both azide and 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR). In Clone 9 cells, the stimulation of glucose transport by a combination of azide and AICAR was not additive, whereas there was an additive increase in the abundance of phosphorylated AMPK (p-AMPK). In Clone 9 cells, AMPK wild-type fibroblasts, and H9c2 heart cells, azide or hypoxia selectively increased p-ERK1/2, whereas, in contrast, AICAR selectively stimulated p-p38; phosphorylation of JNK was unaffected. Azide's effect on p-ERK1/2 abundance and glucose transport in Clone 9 cells was partially abolished by the MEK1/2 inhibitor U0126. SB 203580, an inhibitor of p38, prevented the phosphorylation of p38 and the glucose transport response to AICAR and, unexpectedly, to azide. Hypoxia, azide, and AICAR all led to increased phosphorylation of Akt substrate of 160 kDa (AS160) in Clone 9 cells. Employing small interference RNA directed against AS160 did not inhibit the glucose transport response to azide or AICAR, whereas the content of P-AS160 was reduced by ∼80%. Finally, we found no evidence for coimmunoprecipitation of Glut1 and p-AS160. We conclude that although azide, hypoxia, and AICAR all activate AMPK, the downstream signaling pathways are distinct, with azide and hypoxia stimulating ERK1/2 and AICAR stimulating the p38 pathway.


1999 ◽  
Vol 892 (1 THE METABOLIC) ◽  
pp. 169-186 ◽  
Author(s):  
SCOTT A. SUMMERS ◽  
VIRAVUTH P. YIN ◽  
EILEEN L. WHITEMAN ◽  
LUIS A. GARZA ◽  
HAN CHO ◽  
...  

2020 ◽  
Vol 134 (5) ◽  
pp. 473-512 ◽  
Author(s):  
Ryan P. Ceddia ◽  
Sheila Collins

Abstract With the ever-increasing burden of obesity and Type 2 diabetes, it is generally acknowledged that there remains a need for developing new therapeutics. One potential mechanism to combat obesity is to raise energy expenditure via increasing the amount of uncoupled respiration from the mitochondria-rich brown and beige adipocytes. With the recent appreciation of thermogenic adipocytes in humans, much effort is being made to elucidate the signaling pathways that regulate the browning of adipose tissue. In this review, we focus on the ligand–receptor signaling pathways that influence the cyclic nucleotides, cAMP and cGMP, in adipocytes. We chose to focus on G-protein–coupled receptor (GPCR), guanylyl cyclase and phosphodiesterase regulation of adipocytes because they are the targets of a large proportion of all currently available therapeutics. Furthermore, there is a large overlap in their signaling pathways, as signaling events that raise cAMP or cGMP generally increase adipocyte lipolysis and cause changes that are commonly referred to as browning: increasing mitochondrial biogenesis, uncoupling protein 1 (UCP1) expression and respiration.


Sign in / Sign up

Export Citation Format

Share Document