scholarly journals Enzymatic 2α-Hydroxylation of 4-14C-Cortisol in Guinea Pigs in Vitro

1965 ◽  
Vol 240 (7) ◽  
pp. 2845-2849
Author(s):  
Shlomo Burstein ◽  
Bhagu R. Bhavnani ◽  
Marcel Gut
Keyword(s):  
1976 ◽  
Vol 36 (02) ◽  
pp. 401-410 ◽  
Author(s):  
Buichi Fujttani ◽  
Toshimichi Tsuboi ◽  
Kazuko Takeno ◽  
Kouichi Yoshida ◽  
Masanao Shimizu

SummaryThe differences among human, rabbit and guinea-pig platelet adhesiveness as for inhibitions by adenosine, dipyridamole, chlorpromazine and acetylsalicylic acid are described, and the influence of measurement conditions on platelet adhesiveness is also reported. Platelet adhesiveness of human and animal species decreased with an increase of heparin concentrations and an increase of flow rate of blood passing through a glass bead column. Human and rabbit platelet adhesiveness was inhibited in vitro by adenosine, dipyridamole and chlorpromazine, but not by acetylsalicylic acid. On the other hand, guinea-pig platelet adhesiveness was inhibited by the four drugs including acetylsalicylic acid. In in vivo study, adenosine, dipyridamole and chlorpromazine inhibited platelet adhesiveness in rabbits and guinea-pigs. Acetylsalicylic acid showed the inhibitory effect in guinea-pigs, but not in rabbits.


1963 ◽  
Vol 61 (3) ◽  
pp. 353-363 ◽  
Author(s):  
A. L. Olitzki ◽  
Dina Godinger

1. Salmonella typhi, strain Ty2, grown in vivo and employed as acetone-dried vaccine possessed a higher immunizing potency than the descendants of the same parent strain grown in vitro and employed as vaccine.2. When 2 × 108in vitro-grown bacteria were employed as challenge, the immunizing effects of both types of vaccine were more marked than after administration of 2 × 108in vivo-grown bacteria as challenge.3. The higher potency of the in vivo-grown vaccine was apparent in all experiments, whether the challenge strain was grown in vivo or in vitro.4. Immunogenic substances were isolated from infected organs of mice and guinea-pigs, and an immunogenic substance from the peritoneal fluid of the infected guinea-pigs was concentrated by precipitation with ethanol.


1917 ◽  
Vol 25 (4) ◽  
pp. 557-580 ◽  
Author(s):  
Carroll G. Bull

Streptococci cultivated from the tonsils of thirty-two cases of poliomyelitis were used to inoculate various laboratory animals. In no case was a condition induced resembling poliomyelitis clinically or pathologically in guinea pigs, dogs, cats, rabbits, or monkeys. On the other hand, a considerable percentage of the rabbits and a smaller percentage of some of the other animals developed lesions due to streptococci. These lesions consisted of meningitis, meningo-encephalitis, abscess of the brain, arthritis, tenosynovitis, myositis, abscess of the kidney, endocarditis, pericarditis, and neuritis. No distinction in the character or frequency of the lesions could be determined between the streptococci derived from poliomyelitic patients and from other sources. Streptococci isolated from the poliomyelitic brain and spinal cord of monkeys which succumbed to inoculation with the filtered virus failed to induce in monkeys any paralysis or the characteristic histological changes of poliomyelitis. These streptococci are regarded as secondary bacterial invaders of the nervous organs. Monkeys which have recovered from infection with streptococci derived from cases of poliomyelitis are not protected from infection with the filtered virus, and their blood does not neutralize the filtered virus in vitro. We have failed to detect any etiologic or pathologic relationship between streptococci and epidemic poliomyelitis in man or true experimental poliomyelitis in the monkey.


Nature ◽  
1974 ◽  
Vol 252 (5485) ◽  
pp. 748-749 ◽  
Author(s):  
L. POLAK ◽  
E. MACHER
Keyword(s):  

2007 ◽  
Vol 292 (4) ◽  
pp. L915-L923 ◽  
Author(s):  
Jaime Chávez ◽  
Patricia Segura ◽  
Mario H. Vargas ◽  
José Luis Arreola ◽  
Edgar Flores-Soto ◽  
...  

Organophosphates induce bronchoobstruction in guinea pigs, and salbutamol only transiently reverses this effect, suggesting that it triggers additional obstructive mechanisms. To further explore this phenomenon, in vivo (barometric plethysmography) and in vitro (organ baths, including ACh and substance P concentration measurement by HPLC and immunoassay, respectively; intracellular Ca2+ measurement in single myocytes) experiments were performed. In in vivo experiments, parathion caused a progressive bronchoobstruction until a plateau was reached. Administration of salbutamol during this plateau decreased bronchoobstruction up to 22% in the first 5 min, but thereafter airway obstruction rose again as to reach the same intensity as before salbutamol. Aminophylline caused a sustained decrement (71%) of the parathion-induced bronchoobstruction. In in vitro studies, paraoxon produced a sustained contraction of tracheal rings, which was fully blocked by atropine but not by TTX, ω-conotoxin (CTX), or epithelium removal. During the paraoxon-induced contraction, salbutamol caused a temporary relaxation of ∼50%, followed by a partial recontraction. This paradoxical recontraction was avoided by the M2- or neurokinin-1 (NK1)-receptor antagonists (methoctramine or AF-DX 116, and L-732138, respectively), accompanied by a long-lasting relaxation. Forskolin caused full relaxation of the paraoxon response. Substance P and, to a lesser extent, ACh released from tracheal rings during 60-min incubation with paraoxon or physostigmine, respectively, were significantly increased when salbutamol was administered in the second half of this period. In myocytes, paraoxon did not produce any change in the intracellular Ca2+ basal levels. Our results suggested that: 1) organophosphates caused smooth muscle contraction by accumulation of ACh released through a TTX- and CTX-resistant mechanism; 2) during such contraction, salbutamol relaxation is functionally antagonized by the stimulation of M2 receptors; and 3) after this transient salbutamol-induced relaxation, a paradoxical contraction ensues due to the subsequent release of substance P.


1961 ◽  
Vol 113 (2) ◽  
pp. 359-380 ◽  
Author(s):  
Georges Ungar ◽  
Takuso Yamura ◽  
Jacqueline B. Isola ◽  
Sidney Kobrin

Protease activity was measured through the hydrolysis of synthetic amino acid esters in body fluids and tissues of guinea pigs, rats, mice, and humans. Significant in vitro activation was observed in serum and lung slices of sensitized guinea pigs on addition of the specific antigen. Increased proteolytic activity was also seen in reverse anaphylaxis. More marked activation occurred when guinea pig serum was treated with peptone and guinea pig or rat serum was treated with agar. Protease activation was demonstrated in specimens of human skin under the influence of a poison ivy extract or croton oil added in vitro. Urinary protease activity of guinea pigs increased significantly during the first hours of anaphylactic shock and very markedly in peptone shock. Peptone shock, elicited in mice pretreated with H. pertussis, was accompanied by a considerable increase in protease activity in the peritoneal fluid as compared with non-pretreated mice which were insensitive to peptone. Proteolytic activity resulting from the activation procedures was due to a number of proteases. The dominant substrate affinity and inhibition patterns suggest that serum and urine proteases are similar to but not identical with plasmin. Anaphylactic activation exhibited patterns different from those resulting from the action of anaphylactoid agents. Tissue enzymes are either of cathepsin- or chymotrypsin-type or mixtures of both. Some of the activated enzymes, although remarkably effective in hydrolyzing amino acid esters, show no activity on protein substrates. This does not justify, however, their designation as "esterases." They probably belong to the class of specific proteases acting only on a single or a small number of functionally significant protein substrates. There is at present sufficient evidence to prove not only that protease activation does occur in anaphylaxis and anaphylactoid conditions but also that it is an important component of the chain of reactions leading to the allergic response.


Author(s):  
Bhong Prabha N. ◽  
Naikawade Nilofar. S. ◽  
Mali Pratibha. R. ◽  
Bindu Madhavi. S.

Objectives: The present study designed to evaluate the Antiasthmatic activity of aqueous extract of bark of Eugenia Jambolana (AEEJ) on in vitro and in vivo animal models. Materials and methods: Different in vitro and in vivo animal models was used to study the anti asthmatic activity as isolated goat tracheal chain preparation, Acetylcholine and Histamine induced bronconstriction in guinea pigs, effect of drug extract on histamine release from mast cell was checked by clonidine-induced mast cell degranulation, and milk-induced eosinophilia and leukocytosis. Results: In-vitro study on goat tracheal chain preparation revealed that aqueous extract of Eugenia jambolana (AEEJ)bark exerted antagonistic effect on the histamine induced contraction. (P<0.05) The guinea pigs when exposed to 0.2% histamine aerosol showed signs of progressive dyspnoea leading to convulsions. AEEJ significantly prolonged the latent period of convulsions (PCT) as compared to control following the exposure of histamine (0.2%) aerosol (P<0.01). The observation of present study indicates aqueous extract of Eugenia jambolana shows significant inhibition of milk induced eosinophilia and leukocytosis. Group of animals pretreated with aqueous Eugenia jambolana bark extract showed significant reduction in degranulation of mast cells when challenged with clonidine. The prevention of degranulation process by the aqueous Eugenia jambolana bark extract (P<0.01) indicates a possible stabilizing effect on the mast cells, indicating mast cell stabilizing activity. Conclusions: Thus, AEEJ showed antihistaminic, mast cell stabilizing and protective in guinea pigs against histamine induced PCD, reduced eosinophilia and leukocytosis and hence possesses potential role in the treatment of asthma.


Sign in / Sign up

Export Citation Format

Share Document