scholarly journals An anti-sense c-erbA clone inhibits thyroid hormone-induced expression from the alpha-myosin heavy chain promoter.

1990 ◽  
Vol 265 (11) ◽  
pp. 6489-6493
Author(s):  
B E Markham ◽  
R W Tsika ◽  
J J Bahl ◽  
P G Anderson ◽  
E Morkin
1993 ◽  
Vol 84 (1) ◽  
pp. 61-67 ◽  
Author(s):  
N. K. Green ◽  
M. D. Gammage ◽  
J. A. Franklyn ◽  
A. M. Heagerty ◽  
M. C. Sheppard

1. In order to investigate the molecular mechanisms determining the hypertrophic response of the ventricular myocardium to thyroid hormone administration, changes in left and right ventricular expression of the c-myc, c-fos and H-ras proto-oncogenes in response to treatment with 3,3′,5-tri-iodothyronine were defined. 2. Adult female Wistar rats were treated with daily subcutaneous injections of 3,3′,5-tri-iodothyronine (50 μg) for 1, 3, 7 or 14 days (n = 6 in each treatment group) and the results from 3,3′,5-tri-iodothyronine-treated animals were compared with those obtained from untreated controls (n = 6). Changes in the weight of the left and right ventricles in response to 3,3′,5-tri-iodothyronine treatment were measured; changes in expression of the c-myc, c-fos and H-ras proto-oncogenes were determined in parallel by measurement of specific messenger RNAs by Northern and dot hybridization, as well as changes in expression of β myosin heavy chain messenger RNA. 3. Treatment with 3,3′,5-tri-iodothyronine resulted in increases in both left and right ventricular weights after 3 days, an effect maintained up to 14 days. Despite an increase in left ventricular weight, levels of β myosin heavy chain, c-myc, c-fos and H-ras mRNAs in the left ventricle were unchanged; in contrast, an increase in right ventricular weight was associated with increased expression of β myosin heavy chain, c-myc and c-fos messenger RNAs. 4. These specific ventricular changes in gene expression, in the face of a hypertrophic response of both ventricles to 3,3′,5-tri-iodothyronine, suggest that the cardiac growth response to thyroid hormones reflects the well-documented secondary haemodynamic influences rather than direct gene regulatory actions of 3,3′,5-tri-iodothyronine at the transcriptional level on the genes studied. Changes in right ventricular proto-oncogene and β myosin heavy chain expression may in turn reflect an increase in right ventricular pressure load.


2006 ◽  
Vol 84 (8-9) ◽  
pp. 935-941 ◽  
Author(s):  
Baohua Wang ◽  
Jingping Ouyang ◽  
Zhengyuan Xia

Thyroid hormone-induced cardiac hypertrophy is similar to that observed in physiological hypertrophy, which is associated with high cardiac contractility and increased α-myosin heavy chain (α-MHC, the high ATPase activity isoform) expression. In contrast, angiotensin II (Ang II) induces an increase in myocardial mass with a compromised contractility accompanied by a shift from α-MHC to the fetal isoform β-MHC (the low ATPase activity isoform), which is considered as a pathological hypertrophy and inevitably leads to the development of heart failure. The present study is designed to assess the effect of thyroid hormone on angiotensin II-induced hypertrophic growth of cardiomyocytes in vitro. Cardiomyocytes were prepared from hearts of neonatal Wistar rats. The effects of Ang II and 3,3′,5-triiodo-thyronine (T3) on incorporations of [3H]-thymine and [3H]-leucine, MHC isoform mRNA expression, PKC activity, and PKC isoform protein expression were studied. Ang II enhanced [3H]-leucine incorporation, β-MHC mRNA expression, PKC activity, and PKCε expression and inhibited α-MHC mRNA expression in cardiomyocytes. T3 treatment prevented Ang II-induced increases in PKC activity, PKCε, and β-MHC mRNA overexpression and favored α-MHC mRNA expression. Thyroid hormone appears to be able to reprogram gene expression in Ang II-induced cardiac hypertrophy, and a PKC signal pathway may be involved in such remodeling process.


1997 ◽  
Vol 131 (2) ◽  
pp. 211-219 ◽  
Author(s):  
Laurent M Sachs ◽  
Jean Jacques Lebrun ◽  
Amaury de Luze ◽  
Paul A Kelly ◽  
Barbara A Demeneix

1999 ◽  
Vol 121 (2_suppl) ◽  
pp. P105-P105
Author(s):  
Ya Zhen Wu ◽  
Michael J Baker ◽  
Roger L Crumley ◽  
Vincent J Caiozzo

1999 ◽  
Vol 46 (3) ◽  
pp. 823-835 ◽  
Author(s):  
A Jakubiec-Puka ◽  
I Ciechomska ◽  
U Mackiewicz ◽  
J Langford ◽  
H Chomontowska

The myosin heavy chain (MHC) was studied by biochemical methods in the slow-twitch (soleus) and two fast-twitch leg muscles of the triiodothyronine treated (hyperthyroid), thyroidectomized (hypothyroid) and euthyroid (control) rats. The changes in the contents of individual MHC isoforms(MHC-1, MHC-2A, MHC-2B and MHC-2X) were evaluated in relation to the muscle mass and the total MHC content. The MHC-1 content decreased in hyperthyreosis, while it increased in hypothyreosis in the soleus and in the fast muscles. The MHC-2A content increased in hyperthyreosis and it decreased in hypothyreosis in the soleus muscle. In the fast muscles hyperthyreosis did not affect the MHC-2A content, whereas hypothyreosis caused an increase in this MHC isoform content. The MHC-2X, present only in traces or undetected in the control soleus muscle, was synthesised in considerable amount in hyperthyreosis; in hypothyreosis the MHC-2X was not detected in the soleus. In the fast muscles the content of MHC-2X was not affected by any changes in the thyroid hormone level. The MHC-2B seemed to be not influenced by hyperthyreosis in the fast muscles, whereas the hypothyreosis caused a decrease of its content. In the soleus muscle the MHC-2B was not detected in any groups of rats. The results suggest that the amount of each of the four MHC isoforms expressed in the mature rat leg muscles is influenced by the thyroid hormone in a different way. The MHC-2A and the MHC-2X are differently regulated in the soleus and in the fast muscles; thyroid hormone seems to be necessary for expression of those isoforms in the soleus muscle.


Sign in / Sign up

Export Citation Format

Share Document