scholarly journals The Saccharomyces cerevisiae INO4 gene encodes a small, highly basic protein required for derepression of phospholipid biosynthetic enzymes.

1990 ◽  
Vol 265 (8) ◽  
pp. 4736-4745 ◽  
Author(s):  
D K Hoshizaki ◽  
J E Hill ◽  
S A Henry
2021 ◽  
Author(s):  
Sheng Wu ◽  
Xiaoqiang Ma ◽  
Anqi Zhou ◽  
Alex Valenzuela ◽  
Yanran Li ◽  
...  

Strigolactones (SLs) are a class of phytohormones playing diverse roles in plant growth and development, yet the limited access to SLs is largely impeding SL-based foundational investigations and applications. Here, we developed Escherichia coli-Saccharomyces cerevisiae consortia to establish a microbial biosynthetic platform for the synthesis of various SLs, including carlactone, carlactonic acid, 5-deoxystrigol (5DS), 4-deoxyorobanchol (4DO), and orobanchol (OB). The SL-producing platform enabled us to conduct functional identification of CYP722Cs from various plants as either OB or 5DS synthase. It also allowed us to quantitatively compare known variants of plant SL biosynthetic enzymes in the microbial system. The titer of 5DS was further enhanced through pathway engineering to 0.0473 mg/L. This work provides a unique platform for investigating SL biosynthesis and evolution and lays the foundation for developing SL microbial production process.


1988 ◽  
Vol 8 (11) ◽  
pp. 4773-4779
Author(s):  
M L Greenberg ◽  
S Hubbell ◽  
C Lam

The enzyme phosphatidylglycerolphosphate synthase (PGPS; CDPdiacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase; EC 2.7.8.5) catalyzes the committed step in the synthesis of cardiolipin, a phospholipid found predominantly in the mitochondrial inner membrane. To determine whether PGPS is regulated by cross-pathway control, we analyzed PGPS expression under conditions in which the regulation of general phospholipid synthesis could be examined. The addition of inositol resulted in a three- to fivefold reduction in PGPS expression in wild-type cells in the presence or absence of exogenous choline. The reduction in enzyme activity in response to inositol was seen in minutes, suggesting that inactivation or degradation of the enzyme plays an important role in inositol-mediated repression of PGPS. In cho2 and opi3 mutants, which are blocked in phosphatidylcholine synthesis, inositol-mediated repression of PGPS did not occur unless choline was added to the media. Three previously identified genes that regulate general phospholipid synthesis, INO2, INO4, and OP11, did not affect PGPS expression. Thus, ino2 and ino4 mutants, which are unable to derepress biosynthetic enzymes involved in general phospholipid synthesis, expressed wild-type levels of PGPS activity under derepressing conditions. PGPS expression in the opi1 mutant, which exhibits constitutive synthesis of general phospholipid biosynthetic enzymes, was fully repressed in the presence of inositol and partially repressed even in the absence of inositol. These results demonstrate for the first time that an enzymatic step in cardiolipin synthesis is coordinately controlled with general phospholipid synthesis but that this control is not mediated by the same genetic regulatory circuit.


2015 ◽  
Vol 26 (9) ◽  
pp. 1601-1615 ◽  
Author(s):  
Harsha Garadi Suresh ◽  
Aline Xavier da Silveira dos Santos ◽  
Wanda Kukulski ◽  
Jens Tyedmers ◽  
Howard Riezman ◽  
...  

Cells adapt to changing nutrient availability by modulating a variety of processes, including the spatial sequestration of enzymes, the physiological significance of which remains controversial. These enzyme deposits are claimed to represent aggregates of misfolded proteins, protein storage, or complexes with superior enzymatic activity. We monitored spatial distribution of lipid biosynthetic enzymes upon glucose depletion in Saccharomyces cerevisiae. Several different cytosolic-, endoplasmic reticulum–, and mitochondria-localized lipid biosynthetic enzymes sequester into distinct foci. Using the key enzyme fatty acid synthetase (FAS) as a model, we show that FAS foci represent active enzyme assemblies. Upon starvation, phospholipid synthesis remains active, although with some alterations, implying that other foci-forming lipid biosynthetic enzymes might retain activity as well. Thus sequestration may restrict enzymes' access to one another and their substrates, modulating metabolic flux. Enzyme sequestrations coincide with reversible drastic mitochondrial reorganization and concomitant loss of endoplasmic reticulum–mitochondria encounter structures and vacuole and mitochondria patch organelle contact sites that are reflected in qualitative and quantitative changes in phospholipid profiles. This highlights a novel mechanism that regulates lipid homeostasis without profoundly affecting the activity status of involved enzymes such that, upon entry into favorable growth conditions, cells can quickly alter lipid flux by relocalizing their enzymes.


1973 ◽  
Vol 114 (3) ◽  
pp. 928-933 ◽  
Author(s):  
H. Cherest ◽  
Y. Surdin-Kerjan ◽  
J. Antoniewski ◽  
H. De Robichon-Szulmajster

2000 ◽  
Vol 348 (2) ◽  
pp. 263-272 ◽  
Author(s):  
Shouki KASSIS ◽  
Tiffany MELHUISH ◽  
Roland S. ANNAN ◽  
Susan L. CHEN ◽  
John C. LEE ◽  
...  

The serine/threonine protein kinase, Yak1p, functions as a negative regulator of the cell cycle in Saccharomyces cerevisiae, acting downstream of the cAMP-dependent protein kinase. In the present work we report that overexpression of haemagglutinin-tagged full-lengthYak1p and an N-terminally truncated form (residues 148-807) lead to growth arrest in PKA compromised yak1 null yeast cells. Both forms of recombinant Yak1p kinase were catalytically active and preferred myelin basic protein (MBP) as a substrate over several other proteins. Phosphopeptide analysis of bovine MBP by tandem MS revealed two major Yak1p phosphorylation sites, Thr-97 and Ser-164. Peptides containing each site were obtained and tested as Yak1p substrates. Both forms of Yak1p phosphorylated a peptide containing the Ser-164 residue with far more efficient kinetics than MBP. The maximal velocity (Vmax) values of the full-length Yak1p reaction were 110±21 (Ser-164) and 8.7±1.7 (MBP), and those of N-terminally truncated Yak1p were 560.7±74.8 (Ser-164) and 34.4±2.2 (MBP) pmol/min per mg of protein. Although neither form of Yak1p was able to phosphorylate two generic protein tyrosine kinase substrates, both were phosphorylated on tyrosine residues in vivo and underwent tyrosine autophosphorylation when reacted with ATP in vitro. Tandem MS showed that Tyr-530 was phosphorylated both in vivo and in vitro after reaction with ATP. Pre-treatment with protein tyrosine phosphatase 1B removed all of Yak1p phosphotyrosine content and drastically reduced Yak1p activity against exogenous substrates, suggesting that the phosphotyrosine content of the enzyme is essential for its catalytic activity. Although the N-terminally truncated Yak1p was expressed at a lower level than the full-length protein, its catalytic activity and phosphotyrosine content were significantly higher than those of the full-length enzyme. Taken together, our results suggest that Yak1p is a dual specificity protein kinase which autophosphorylates on Tyr-530 and phosphorylates exogenous substrates on Ser/Thr residues.


1994 ◽  
Vol 35 (12) ◽  
pp. 2254-2262
Author(s):  
S A Minskoff ◽  
P V Racenis ◽  
J Granger ◽  
L Larkins ◽  
A K Hajra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document