Replication of RNA viruses: Structure of a 6 s RNA synthesized by the Qβ RNA polymerase

1972 ◽  
Vol 71 (3) ◽  
pp. 657-670 ◽  
Author(s):  
Carol L. Prives ◽  
Philip M. Silverman
Keyword(s):  
2021 ◽  
Author(s):  
◽  
Ye Li

<p>Infections caused by RNA viruses, such as Ebola and Zika, continue to exist worldwide as significant public health problems. In response to the urgent need for safer and more efficacious treatment options to treat infections caused by RNA viruses, the pharmaceutical and biotechnology industries have devoted significant efforts over the last two decades to discovering and developing new antiviral agents. One such antiviral, Sofosbuvir®, was approved by the US Federal Drug Administration (FDA) in 2014 and has revolutionized the treatment of Hepatitis-C. Sofosbuvir® was the second largest selling drug in the world in 2016 and in just twenty-one months Gilead reported sales worth $26.6 billion USD.The strategy of using nucleoside analogues to inhibit viral RNA dependent RNA polymerase(RdRp)has been pursued since the 1970s, and exemplified bythe discovery and development of ribavirin. The natural substrates of RNA polymerases are nucleoside triphosphates and often the efficacy of nucleoside analogues as antivirals are dependent on their ability to be converted by the host or virus to mono-, di-, and ultimately tri-phosphate analogues which block the active site of RNA polymerase as an analogue of the substrate causing chain termination. Recently Biocryst Pharmaceuticals (Biocryst) described the anti-viral properties of Immucillin-A (Galidesivir), an iminoribitol based nucleoside analogue, which was found to have broad spectrum antiviral activity especially against RNA viruses including Ebola. Researchers at the Ferrier Research Institute (Ferrier) have synthesizedan analogue of Immucillin-A, 8-aza-Immucillin-A (AIA) which shows comparable activityto Immucillin-A, in anti-viral screens against Ebola, and this antiviral activity forms part of a US patent application. The Ferrier is keen to further exemplify this compound class through the synthesis of analogues of both Immucillin-A and AIA as well as improve the overall synthesis of the lead compound AIA.Included as part of this study is the synthesis of pro-drugs of these iminoribitol based nucleoside analogues. Prodrugs are metabolized inside the body and are often converted to the corresponding pharmacologically active form. In general, prodrug strategies have improved the bioavailability and efficacy of many drugs. In particular, prodrugs strategies involving nucleoside analogue antivirals, which target RNA polymerase, have been particularly effective as they ensure conversion to the monophosphate in vivo. Conversion to the 5’-monophosphate form of a nucleoside analogue is the rate limiting step to the inhibition of the RNA polymerase –prior to its conversion to the triphosphateanalogue. The prodrug is effectively a protected monophosphate, and is then readily converted to monophosphate by the host and then onto the di-and tri-phosphate by kinases in both the host and virus. ProTide prodrugs, such as Sofosbuvir® provide a verified strategy for improving anti-viral activity and hence our desire to synthesize pro-drugs of all our iminoribitol based nucleoside analogues. This research thesis also involved repeating the known synthesis of the Immucillins, in particular, Immucillin-H (Forodesine), which requires in excess of 20 linear synthetic steps to make. The linear synthetic route to Immucillin-H was used instead of the more convenient convergent method developed by the Ferrier as several key synthetic intermediates in this progress were utilized in the attempted synthesis of some of the planned nucleoside analogues of AIA. As part of this work the candidate learned aspects of scaling up chemical reactions andthe critical analysis of both reaction hazards and reagent compatibilities at scale. Where possible and given the number of synthetic steps involved the candidate was also interested in improving the yields of the building blocks involved in the synthesis of the Immucillins with limited success.</p>


2006 ◽  
Vol 87 (3) ◽  
pp. 665-672 ◽  
Author(s):  
Samuel Cordey ◽  
Laurent Roux

For the non-segmented, negative-stranded RNA viruses, the mechanism controlling transcription or replication is still a matter of debate. To gain information about this mechanism and about the nature of the RNA polymerase involved, the length of an intervening sequence separating the 3′ end of Sendai virus minigenomes and a downstream transcription-initiation signal was increased progressively. It was found that transcription, as measured by green fluorescent protein (GFP) expression, decreased progressively in proportion to the increase in length of the intervening sequence. GFP expression correlated well with the levels of GFP mRNA in the cells, as measured by quantitative primer extension and by RNase protection. Thus, mRNA transcription was inversely proportional to the length of the inserted sequence. These data are evidence that the RNA polymerase initiating transcription at the downstream transcription signal somehow sees the distance separating this signal and the template 3′ extremity. Implication of this observation for the nature of the Sendai virus RNA polymerase and for the mechanism by which it synthesizes mRNAs or replication products is presented.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Yuka Hagiwara-Komoda ◽  
Sun Hee Choi ◽  
Masanao Sato ◽  
Go Atsumi ◽  
Junya Abe ◽  
...  

2020 ◽  
Author(s):  
Yuto Chiba ◽  
Takashi Yaguchi ◽  
Syun-ichi Urayama ◽  
Daisuke Hagiwara

AbstractBy identifying variations in viral RNA genomes, cutting-edge metagenome technology has potential to reshape current concepts about the evolution of RNA viruses. This technology, however, cannot process low-homology genomic regions properly, leaving the true diversity of RNA viruses unappreciated. To overcome this technological limitation we applied an advanced method, Fragmented and Primer-Ligated Double-stranded (ds) RNA Sequencing (FLDS), to screen RNA viruses from 155 fungal isolates, which allowed us to obtain complete viral genomes in a homology-independent manner. We created a high-quality catalog of 19 RNA viruses (12 viral species) that infect Aspergillus isolates. Among them, nine viruses were not detectable by the conventional methodology involving agarose gel electrophoresis of dsRNA, a hallmark of RNA virus infections. Segmented genome structures were determined in 42% of the viruses. Some RNA viruses had novel genome architectures; one contained a dual methyltransferase domain and another had a separated RNA-dependent RNA polymerase (RdRp) gene. A virus from a different fungal taxon (Pyricularia) had an RdRp sequence that was separated on different segments, suggesting that a divided RdRp is widely present among fungal viruses, despite the belief that all RNA viruses encode RdRp as a single gene. These findings illustrate the previously hidden diversity and evolution of RNA viruses, and prompt reconsideration of the structural plasticity of RdRp. By highlighting the limitations of conventional surveillance methods for RNA viruses, we showcase the potential of FLDS technology to broaden current knowledge about these viruses.Author SummaryThe development of RNA-seq technology has facilitated the discovery of RNA viruses in all types of biological samples. However, it is technically difficult to detect highly novel viruses using RNA-seq. We successfully reconstructed the genomes of multiple novel fungal RNA viruses by screening host fungi using a new technology, FLDS. Surprisingly, we identified two viral species whose RNA-dependent RNA polymerase (RdRp) proteins were separately encoded on different genome segments, overturning the commonly accepted view of the positional unity of RdRp proteins in viral genomes. This new perspective on divided RdRp proteins should hasten the discovery of viruses with unique RdRp structures that have been overlooked, and further advance current knowledge and understanding of the diversity and evolution of RNA viruses.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ryosuke Fujita ◽  
Maki N. Inoue ◽  
Takumi Takamatsu ◽  
Hiroshi Arai ◽  
Mayu Nishino ◽  
...  

Late male-killing, a male-specific death after hatching, is a unique phenotype found in Homona magnanima, oriental tea tortrix. The male-killing agent was suspected to be an RNA virus, but details were unknown. We herein successfully isolated and identified the putative male-killing virus as Osugoroshi viruses (OGVs). The three RNA-dependent RNA polymerase genes detected were phylogenetically related to Partitiviridae, a group of segmented double-stranded RNA viruses. Purified dsRNA from a late male-killing strain of H. magnanima revealed 24 segments, in addition to the RdRps, with consensus terminal sequences. These segments included the previously found male-killing agents MK1068 (herein OGV-related RNA16) and MK1241 (OGV-related RNA7) RNAs. Ultramicroscopic observation of purified virions, which induced late male-killing in the progeny of injected moths, showed sizes typical of Partitiviridae. Mathematical modeling showed the importance of late male-killing in facilitating horizontal transmission of OGVs in an H. magnanima population. This study is the first report on the isolation of partiti-like virus from insects, and one thought to be associated with late male-killing, although the viral genomic contents and combinations in each virus are still unknown.


Author(s):  
Dany Geraldo Kramer ◽  
Maria Josilene Leonardo Da Silva ◽  
Gislanne Stéphanne Estevam Da Silva ◽  
Ana Maria Marinho Andrade De Moura ◽  
Geraldo Barroso Cavalcanti Junior ◽  
...  

Favipiravir is a drug developed for use against influenza and has been used successfully in other infectious conditions. After being internalized in the cell, the substance is phosphoribosylated acting on the RNA polymerase, and thus inhibiting replication and RNA viruses. Thus, the present study aimed to discuss the potential use of favipiravir in coronovavirus infections. There have been few studies involving favipiravir in COVID 19, however there is a report of recovery in more than 70% of patients diagnosed with pneumonia. However, new studies need to be carried out, mainly randomized clinical trials, so that the potential use of favipiravir in coronoviruses is adequately grounded.


2021 ◽  
Vol 28 ◽  
Author(s):  
Daniel Miranda ◽  
David Jesse Sanchez

Abstract: Progressive globalization of our society brings not only worldwide integration, it increases and promotes our exposure to new viral pathogens with evident impacts on our global health. Especially with the emergence of SARS-CoV-2, our biomedical research infrastructure has never been more compelled to rapidly develop antiviral regimens that demonstrate improved efficacy against these pathogens. Here we showcase 3 poignant antivirals against the lucrative target, RNA-dependent RNA polymerase (RdRP) of RNA viruses – a timely and relevant topic given the present efforts against COVID-19. While effective drug designs against RdRP are important, their benefit and potential as a standard of care truly relies on them standing out in well-designed clinical trials.


2018 ◽  
Vol 93 (5) ◽  
Author(s):  
Ryan H. Gumpper ◽  
Weike Li ◽  
Ming Luo

ABSTRACTNegative-strand RNA viruses (NSVs) include some of the most pathogenic human viruses known. NSVs completely rely on the host cell for protein translation, but their codon usage bias is often different from that of the host. This discrepancy may have originated from the unique mechanism of NSV RNA synthesis in that the genomic RNA sequestered in the nucleocapsid serves as the template. The stability of the genomic RNA in the nucleocapsid appears to regulate its accessibility to the viral RNA polymerase, thus placing constraints on codon usage to balance viral RNA synthesis. Byin situanalyses of vesicular stomatitis virus RNA synthesis, specific activities of viral RNA synthesis were correlated with the genomic RNA sequence. It was found that by simply altering the sequence and not the amino acid that it encoded, a significant reduction, up to an ∼750-fold reduction, in viral RNA transcripts occurred. Through subsequent sequence analysis and thermal shift assays, it was found that the purine/pyrimidine content modulates the overall stability of the polymerase complex, resulting in alteration of the activity of viral RNA synthesis. The codon usage is therefore constrained by the obligation of the NSV genome for viral RNA synthesis.IMPORTANCENegative-strand RNA viruses (NSVs) include the most pathogenic viruses known. New methods to monitor their evolutionary trends are urgently needed for the development of antivirals and vaccines. The protein translation machinery of the host cell is currently recognized as a main genomic regulator of RNA virus evolution, which works especially well for positive-strand RNA viruses. However, this approach fails for NSVs because it does not consider the unique mechanism of their viral RNA synthesis. For NSVs, the viral RNA-dependent RNA polymerase (vRdRp) must gain access to the genome sequestered in the nucleocapsid. Our work suggests a paradigm shift that the interactions between the RNA genome and the nucleocapsid protein regulate the activity of vRdRp, which selects codon usage.


Sign in / Sign up

Export Citation Format

Share Document