Strengthening of sol-gel-derived SiO2 glass fibers by incorporating colloidal silica particles

1992 ◽  
Vol 143 ◽  
pp. 31-39 ◽  
Author(s):  
Tadanori Hashimoto ◽  
Kanichi Kamiya ◽  
Hiroyuki Nasu
1995 ◽  
Vol 103 (1195) ◽  
pp. 245-250 ◽  
Author(s):  
Kanichi KAMIYA ◽  
Rinko UEMURA ◽  
Jun MATSUOKA ◽  
Hiroyuki NASU

2010 ◽  
Vol 64 (3) ◽  
pp. 258-260 ◽  
Author(s):  
Aaron J. Kessman ◽  
Darran R. Cairns ◽  
Paul J. Richter ◽  
Frank J. Bottari

2000 ◽  
Vol 628 ◽  
Author(s):  
Guang-Way Jang ◽  
Ren-Jye Wu ◽  
Yuung-Ching Sheen ◽  
Ya-Hui Lin ◽  
Chi-Jung Chang

This work successfully prepared an UV curable organic-inorganic hybrid material consisting of organic modified colloidal silica. Applications of UV curable organic-inorganic hybrid materials include abrasion resistant coatings, photo-patternable thin films and waveguides. Colloidal silica containing reactive functional groups were also prepared by reacting organic silane and tetraethyl orthosilicate (TEOS) using sol-gel process. In addition, the efficiency of grafting organic moiety onto silica nanoparticles was investigated by applying TGA and FTIR techniques. Experimental results indicated a strong interdependence between surface modification efficiency and solution pH. Acrylate-SiO2 hybrid formation could result in a shifting of thermal degradation temperature of organic component from about 200°C to near 400°C. In addition, the stability of organic modified colloidal silica in UV curable formula and the physical properties of resulting coatings were discussed. Furthermore, the morphology of organic modified colloidal silica was investigated by performing TEM and SEM studies‥


Langmuir ◽  
2004 ◽  
Vol 20 (7) ◽  
pp. 2523-2526 ◽  
Author(s):  
S. H. Kim ◽  
B. Y. H. Liu ◽  
M. R. Zachariah

Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 463
Author(s):  
Srecko Stopic ◽  
Felix Wenz ◽  
Tatjana-Volkov Husovic ◽  
Bernd Friedrich

Silica has sparked strong interest in hydrometallurgy, catalysis, the cement industry, and paper coating. The synthesis of silica particles was performed at 900 °C using the ultrasonic spray pyrolysis (USP) method. Ideally, spherical particles are obtained in one horizontal reactor from an aerosol. The controlled synthesis of submicron particles of silica was reached by changing the concentration of precursor solution. The experimentally obtained particles were compared with theoretically calculated values of silica particles. The characterization was performed using a scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS). X-ray diffraction, frequently abbreviated as XRD, was used to analyze the structure of obtained materials. The obtained silica by ultrasonic spray pyrolysis had an amorphous structure. In comparison to other methods such as sol–gel, acidic treatment, thermal decomposition, stirred bead milling, and high-pressure carbonation, the advantage of the ultrasonic spray method for preparation of nanosized silica controlled morphology is the simplicity of setting up individual process segments and changing their configuration, one-step continuous synthesis, and the possibility of synthesizing nanoparticles from various precursors.


Sign in / Sign up

Export Citation Format

Share Document