Flexural strength of an infused ceramic, glass ceramic, and feldspathic porcelain

1995 ◽  
Vol 73 (5) ◽  
pp. 411-418 ◽  
Author(s):  
Russell A. Giordano ◽  
Lionel Pelletier ◽  
Stephen Campbell ◽  
Richard Pober
2016 ◽  
Vol 702 ◽  
pp. 28-31 ◽  
Author(s):  
Silvia Barbi ◽  
Monia Montorsi ◽  
Consuelo Mugoni ◽  
Cristina Siligardi

Glass ceramic materials are widely used in dental application because of their strong similarity with natural teeth. In this study LAS glass ceramic/glass materials were prepared by glazing processing and characterized in terms of mechanical flexural strength. The selected glass ceramic support derives from an industrial process. Different glasses were applied to the glass ceramic support in order to investigate firstly their effect on the glass ceramic/glass interface and secondly how these structural changes are correlated to the flexural strength property. Different thermal cycles were applied to the glass ceramic in order to promote the increasing of mechanical flexural strength. Preliminary results clearly points out that the application of a glass on the support leads to the decrease of the flexural strength if compared to the materials without any coating applied.


2020 ◽  
Vol 2 (1) ◽  
pp. 4-11
Author(s):  
Marcia Borba ◽  
Paula Benetti ◽  
Giordana P. Furini ◽  
Kátia R. Weber ◽  
Tábata M. da Silva

Background: The use of zirconia-based ceramics to produce monolithic restorations has increased due to improvements in the optical properties of the materials. Traditionally, zirconiabased ceramics were veneered with porcelain or glass-ceramic and were not directly exposed to the oral environment. Therefore, there are several doubts regarding the wear of the monolithic zirconia restoration and their antagonists. Additionally, different surface treatments are recommended to promote a smooth surface, including glaze and several polishing protocols. To support the correct clinical application, it is important to understand the advantages and limitations of each surface treatment. Objective: The aim of this short literature review is to investigate the factors that may affect the wear of monolithic zirconia restorations in service and their antagonists. Methods: Pubmed/Medline database was accessed to review the literature from a 10-year period using the keywords: zirconia, monolithic, prosthesis, wear. Both clinical and in vitro studies were included in the review. Results: Studies investigated the effect of several surface treatments, including grinding with diamond- burs, polishing and glazing, on the surface roughness, phase transformation and wear capacity of monolithic zirconia. The wear behavior of monolithic zirconia was frequently compared to the wear behavior of other ceramics, such as feldspathic porcelain, lithium disilicate-based glassceramic and leucite-reinforced glass-ceramic. Human tooth, ceramics and resin composites were used as antagonist in the investigations. Only short-term clinical studies are available (up to 2 years). Conclusion: Literature findings suggest that zirconia monolithic restorations are wear resistant and unlikely to cause excessive wear to the antagonist, especially when compared to feldspathic porcelain and glass-ceramics. Monolithic zirconia should be polished rather than glazed. Yet, none of the polishing systems studied was able to completely restore the initial surface conditions of zirconia after being adjusted with burs. More clinical evidence of the antagonist tooth wear potential of monolithic zirconia is needed.


2019 ◽  
Vol 44 (2) ◽  
pp. 200-209 ◽  
Author(s):  
F Murillo-Gómez ◽  
RB Wanderley ◽  
MF De Goes

SUMMARY The aim of this study was to determine whether using a silane-containing universal adhesive as a silane primer in glass-ceramic/resin cement systems affects biaxial flexural strength (BFS) and bonded interface integrity after loading. Glass-ceramic (IPS e.max CAD, Ivoclar/Vivadent, Schaan, Liechtenstein) disc-shaped specimens (6.5±0.1mm in diameter, 0.5±0.1mm thick) were etched with 5% hydrofluoric acid (HF) for 20 seconds and divided into four groups of 30 specimens, to be treated as follows: 1) One bottle silane primer (RCP); 2) Separate application of silane and adhesive (RCP+SB); 3) Silane-containing universal adhesive (SBU); 4) No treatment (C). After silanization, all specimens were resin cement– coated and polymerized for 40 seconds. Each specimen layer was measured, as well as each assembly's thickness, using a digital caliper and scanning electron microscope (SEM). Specimens were stored for 24 hours and submitted to a BFS test (1.27 mm/min). BFS values were calculated using the bilayer disc-specimen solution. Bonded interfaces were analyzed on fractured fragments using SEM. One-way ANOVA and Tukey tests (α=0.05) were applied, as well as the Weibull analysis. Factor “silane treatment” was statistically significant (p<0.0001). RCP+SB (372.2±29.4 MPa) and RCP (364.2±29.5 MPa) produced significantly higher BFS than did the C (320.7±36.3 MPa) or SBU (338.0±27.1 MPa) groups. No differences were found in the Weibull modulus (m: RCP: 10.1-17.3; RCP+SB: 10.1-17.0; SBU: 12.3-22.4; C: 7.4-12.9). Bonded interface analysis exhibited ceramic-cement separation (SBU, C) and voids within the resin cement layer (all groups). Neither the ceramic/cement system's BFS nor its bonded interface stability were improved by SBU after loading.


2016 ◽  
Vol 32 ◽  
pp. e15-e16
Author(s):  
F. Murillo-Gómez ◽  
R.B.W. Lima ◽  
M.F. De Goes

2015 ◽  
Vol 34 (3) ◽  
pp. 302-309 ◽  
Author(s):  
Kamolporn WATTANASIRMKIT ◽  
Viritpon SRIMANEEPONG ◽  
Kanchana KANCHANATAWEWAT ◽  
Naruporn MONMATURAPOJ ◽  
Pasutha THUNYAKITPISAL ◽  
...  

Cerâmica ◽  
2016 ◽  
Vol 62 (362) ◽  
pp. 121-127 ◽  
Author(s):  
P. P. Kist ◽  
I. L. Aurélio ◽  
M. Amaral ◽  
L. G. May

Abstract The purpose of the present study was to determine the biaxial flexural strength (BFS) of a CAD/CAM leucite reinforced glass-ceramic ground by diamond burs of different grit sizes and the influence of surface roughness on the BFS. For this, 104 plates were obtained from CAD/CAM ceramic blocks and divided into 4 groups (n = 26), according to bur grit size: extra-fine, fine, medium and coarse. Roughness parameters (Ra, RyMax) were measured, and plates were kept dry for 7 days. The flexural test was carried out and BFS was calculated. Ra, RyMax and BFS data were subjected to analysis of variance and post-hoc test. Weibull analysis was used to compare characteristic strength and Weibull modulus. Regression analysis was performed for BFS vs. Ra and RyMax. When burs with coarse grit were used, higher surface roughness values were found, causing a negative effect on the ceramic BFS (117 MPa for extra-fine, and 83 MPa for coarse). Correlation (r) between surface roughness and BFS was 0.78 for RyMax and 0.73 for Ra. Increases in diamond grit size have a significant negative effect on the BFS of leucite-reinforced glass-ceramics, suggesting that grinding of sintered glass-ceramic should be performed using burs with the finest grit possible in order to minimize internal surface flaws and maximize flexural strength.


1987 ◽  
Vol 112 ◽  
Author(s):  
Roseanne S. Baker ◽  
Bruce A. Staples ◽  
Dieter A. Knecht ◽  
Julius R. Berreth

AbstractCandidate products are being evaluated to immobilize the routinely calcined waste at the Idaho Chemical Processing Plant (ICPP). A potential product with minimal volume for immobilizing ICPP high-level waste (HLW) for final disposal is a high-waste-loading and high-density glass-ceramic. Glass-ceramics are formed by Hot Isostatic Pressing (HIPing) the HLW with selected additives, such as SiO2, B2O3, Li2O, Na2O, and Y2O3. Glass-ceramic products have been formed with calcine loa ings up to 80 wt% and densities up to 3.4 g/cm3. Crystalline phases observed in the glass-ceramic products include calcium fluoride, monoclinic and cubic zirconia, calcium- and yttrium-stabilized zirconia, and zircon. An interstitial amorphous phase also exists consisting of the oxides of silicon, aluminum, boron, and alkalis. The glass-ceramic waste forms give leach rates comparable to simulated HLW glass products.


Sign in / Sign up

Export Citation Format

Share Document