Hyperintense and hypointense MRI signals of the precentral gyrus and corticospinal tract in ALS: A follow-up examination including FLAIR images

2002 ◽  
Vol 199 (1-2) ◽  
pp. 59-65 ◽  
Author(s):  
M.J Hecht ◽  
F Fellner ◽  
C Fellner ◽  
M.J Hilz ◽  
B Neundörfer ◽  
...  
2017 ◽  
Vol 41 (5) ◽  
pp. 507-511
Author(s):  
Sang Yoon Lee ◽  
Si Hyun Kang ◽  
Don-Kyu Kim ◽  
Kyung Mook Seo ◽  
Hee Joon Ro ◽  
...  

Background:After amputation, the brain is known to be reorganized especially in the primary motor cortex. We report a case to show changes in the corticospinal tract in a patient with serial bilateral transtibial amputations using diffusion tensor imaging.Case Description and Methods:A 78-year-old man had a transtibial amputation on his left side in 2008 and he underwent a right transtibial amputation in 2011. An initial brain magnetic resonance imaging with a diffusion tensor imaging was performed before starting rehabilitation on his right transtibial prosthesis, and a follow-up magnetic resonance imaging with diffusion tensor imaging was performed 2 years after this.Findings and Outcomes:In the initial diffusion tensor imaging, the number of fiber lines in his right corticospinal tract was larger than that in his left corticospinal tract. At follow-up diffusion tensor imaging, there was no definite difference in the number of fiber lines between both corticospinal tracts.Conclusion:We found that side-to-side corticospinal tract differences were equalized after using bilateral prostheses.Clinical relevanceThis case report suggests that diffusion tensor imaging tractography could be a useful method to understand corticomotor reorganization after using prosthesis in transtibial amputation.


Neurosurgery ◽  
2010 ◽  
Vol 67 (2) ◽  
pp. 302-313 ◽  
Author(s):  
Andrea Szelényi ◽  
Elke Hattingen ◽  
Stefan Weidauer ◽  
Volker Seifert ◽  
Ulf Ziemann

Abstract OBJECTIVE To determine the degree to which the pattern of intraoperative isolated, unilateral alteration of motor evoked potential (MEP) in intracranial surgery was related to motor outcome and location of new postoperative signal alterations on magnetic resonance imaging (MRI). METHODS In 29 patients (age, 42.8 ± 18.2 years; 15 female patients; 25 supratentorial, 4 infratentorial procedures), intraoperative MEP alterations in isolation (without significant alteration in other evoked potential modalities) were classified as deterioration (> 50% amplitude decrease and/or motor threshold increase) or loss, respectively, or reversible and irreversible. Postoperative MRI was described for the location and type of new signal alteration. RESULTS New motor deficit was present in all 5 patients with irreversible MEP loss, in 7 of 10 patients with irreversible MEP deterioration, in 1 of 6 patients with reversible MEP loss, and in 0 of 8 patients with reversible MEP deterioration. Irreversible compared with reversible MEP alteration was significantly more often correlated with postoperative motor deficit (P < .0001). In 20 patients, 22 new signal alterations affected 29 various locations (precentral gyrus, n = 5; corticospinal tract, n = 19). Irreversible MEP alteration was more often associated with postoperative new signal alteration in MRI compared with reversible MEP alteration (P = .02). MEP loss was significantly more often associated with subcortically located new signal alteration (P = .006). MEP deterioration was significantly more often followed by new signal alterations located in the precentral gyrus (P = .04). CONCLUSION MEP loss bears a higher risk than MEP deterioration for postoperative motor deficit resulting from subcortical postoperative MR changes in the corticospinal tract. In contrast, MEP deterioration points to motor cortex lesion. Thus, even MEP deterioration should be considered a warning sign if surgery close to the motor cortex is performed.


Stroke ◽  
2019 ◽  
Vol 50 (12) ◽  
pp. 3569-3577 ◽  
Author(s):  
David J. Lin ◽  
Alison M. Cloutier ◽  
Kimberly S. Erler ◽  
Jessica M. Cassidy ◽  
Samuel B. Snider ◽  
...  

Background and Purpose— Injury to the corticospinal tract (CST) has been shown to have a major effect on upper extremity motor recovery after stroke. This study aimed to examine how well CST injury, measured from neuroimaging acquired during the acute stroke workup, predicts upper extremity motor recovery. Methods— Patients with upper extremity weakness after ischemic stroke were assessed using the upper extremity Fugl-Meyer during the acute stroke hospitalization and again at 3-month follow-up. CST injury was quantified and compared, using 4 different methods, from images obtained as part of the stroke standard-of-care workup. Logistic and linear regression were performed using CST injury to predict ΔFugl-Meyer. Injury to primary motor and premotor cortices were included as potential modifiers of the effect of CST injury on recovery. Results— N=48 patients were enrolled 4.2±2.7 days poststroke and completed 3-month follow-up (median 90-day modified Rankin Scale score, 3; interquartile range, 1.5). CST injury distinguished patients who reached their recovery potential (as predicted from initial impairment) from those who did not, with area under the curve values ranging from 0.70 to 0.8. In addition, CST injury explained ≈20% of the variance in the magnitude of upper extremity recovery, even after controlling for the severity of initial impairment. Results were consistent when comparing 4 different methods of measuring CST injury. Extent of injury to primary motor and premotor cortices did not significantly influence the predictive value that CST injury had for recovery. Conclusions— Structural injury to the CST, as estimated from standard-of-care imaging available during the acute stroke hospitalization, is a robust way to distinguish patients who achieve their predicted recovery potential and explains a significant amount of the variance in poststroke upper extremity motor recovery.


BMC Neurology ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Bing Bao ◽  
Xiangbin Wu ◽  
Zhongbin Xia ◽  
Yaoyao Shen

Abstract Background Wallerian degeneration (WD) can occur in different projecting systems, such as corticospinal tract, dentate-rubro-olivary pathway, and corticopontocerebellar tract. However, the co-occurrence of hypertrophic olivary degeneration (HOD) and middle cerebellar peduncles (MCPs) degeneration secondary to unilateral pontine infarction in a single patient is extremely rare. Case presentation A 71-year-old man presented with acute onset of dizzness, slurred speech, and right-sided weakness. On the next day, his previous neurologic deficits deteriorated. Brain magnetic resonance imaging (MRI) revealed acute ischemic stroke of the left pons. After treatment with thrombolysis, antiplatelets, and rehabilitation training, his speaking and motor function improved moderately. At the 3-month follow-up, the MRI showed hyperintensity in the left medulla oblongata and bilateral MCPs on T2-weighted and FLAIR images, suggesting HOD as well as MCPs degeneration. Conclusions It is of great importance for us to know the anatomic knowledge of dentate-rubro-olivary and corticopontocerebellar pathways.


2003 ◽  
Vol 45 (9) ◽  
pp. 598-600 ◽  
Author(s):  
S. Jacob ◽  
J. Finsterbusch ◽  
J. H. Weishaupt ◽  
D. Khorram-Sefat ◽  
J. Frahm ◽  
...  

2021 ◽  
Vol 12 ◽  
pp. 280
Author(s):  
Arpan V. Prabhu ◽  
Madison Lee ◽  
Edvaldo Galhardo ◽  
Madison Newkirk ◽  
Analiz Rodriguez ◽  
...  

Background: Patients with unresectable locoregional cancer recurrences have limited management options. Reirradiation increases the risk of toxicity, particularly when perilesional dose-volume constraints are exceeded. We present and discuss two cases of previously irradiated tumors in the central nervous system (CNS) that was reirradiated using the pulsed reduced dose-rate radiotherapy (PRDR) technique. Case Description: A 58-year-old female with a history of metastatic small cell lung cancer to the brain status post multiple rounds of radiation and chemotherapy presented with increasing weakness in her right arm and leg. Magnetic resonance imaging (MRI) revealed a growly peripherally enhancing 1.2 cm mass in the left precentral gyrus that had previously received prophylactic cranial irradiation and stereotactic radiosurgery. The patient was re-irradiated with 35 Gy in 100 fractions over 3 weeks, using PRDR with improved motor function at 3-month follow-up. A 41-year-old male with recurrent glioblastoma of the thoracic spinal cord presented with worsening neurological symptoms, including inability to ambulate due to bilateral leg weakness, causing wheelchair use. MRI thoracic spine revealed a recurrent thoracic lesion 2.2 × 1 × 0.8 cm. In addition to chronic chemotherapy, the patient was retreated palliatively in the same area at 50 Gy in 250 fractions, over 6 weeks, using PRDR. The treated lesion was stable on follow-up imaging, and the patient was able to walk with the assistance of a walker. Conclusion: In our two cases, PRDR proved effective in the treatment of recurrent malignant CNS tumors that were previously irradiated. Prospective studies are needed to delineate the efficacy and toxicity of PRDR.


2018 ◽  
Vol 129 (5) ◽  
pp. 895-900 ◽  
Author(s):  
Luis Velázquez-Pérez ◽  
Roberto Rodríguez-Labrada ◽  
Reidenis Torres-Vega ◽  
Ricardo Ortega-Sánchez ◽  
Jacqueline Medrano-Montero ◽  
...  

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 544-545
Author(s):  
Chun Liang Hsu ◽  
Brad Manor ◽  
Lewis Lipsitz

Abstract Mobility impairment is a geriatric giant. Particularly, slow gait is associated with elevated risk for cognitive decline, disabilities and dementia. Gait is the product of complex neural network interactions and changes in their connectivity pattern may negatively impact gait speed. However, mechanistic neural correlates for gait speed maintenance and decline remained unclear. As such, the aim of this study is to investigate differences in neural network connectivity in older adults with and without gait speed decline over 24 months. This sub-analysis included 35 community-dwelling older adults age >70 years from the MOBILIZE Boston Study. Baseline assessments included four-meter gait speed test and resting-state fMRI. Gait speed was reassessed at a 24-month follow-up. Participants were stratified to “Maintainer” and “Decliner” groups based upon a cut-off of >0.05 m/s decline in gait speed from baseline to follow-up. A priori selected functional network included sensori-motor network (SMN) and frontoparietal network (FPN). Multivariate analysis of variance was performed to determine between group differences in network connectivity. Discriminant analysis was conducted to identify relative contribution of network connectivity to group classification. Between the 14 Maintainers and 21 Decliners (mean age 83.9 years), Maintainers were younger (p=0.088). After adjusting for age, Maintainers exhibited lower SMN premotor-precentral gyrus connectivity (p=0.023), greater FPN ventral visual-supramarginal gyrus connectivity (p=0.025), and trend level greater SMN-FPN cerebellum-occipital connectivity (p=0.053). Premotor-precentral gyrus connectivity showed greatest contribution to discriminant function. These preliminary findings suggest aberrant connectivity patterns of the SMN and FPN may be predictive of older adults’ ability to maintain gait speed.


2021 ◽  
pp. 1-9

OBJECTIVE Speech arrest is a common but crucial negative motor response (NMR) recorded during intraoperative brain mapping. However, recent studies have reported nonspeech-specific NMR sites in the ventral precentral gyrus (vPrCG), where stimulation halts both speech and ongoing hand movement. The aim of this study was to investigate the spatial relationship between speech-specific NMR sites and nonspeech-specific NMR sites in the lateral frontal cortex. METHODS In this prospective cohort study, an intraoperative mapping strategy was designed to identify positive motor response (PMR) sites and NMR sites in 33 consecutive patients undergoing awake craniotomy for the treatment of left-sided gliomas. Patients were asked to count, flex their hands, and simultaneously perform these two tasks to map NMRs. Each site was plotted onto a standard atlas and further analyzed. The speech and hand motor arrest sites in the supplementary motor area of 2 patients were resected. The 1- and 3-month postoperative language and motor functions of all patients were assessed. RESULTS A total of 91 PMR sites and 72 NMR sites were identified. NMR and PMR sites were anteroinferiorly and posterosuperiorly distributed in the precentral gyrus, respectively. Three distinct NMR sites were identified: 24 pure speech arrest (speech-specific NMR) sites (33.33%), 7 pure hand motor arrest sites (9.72%), and 41 speech and hand motor arrest (nonspeech-specific NMR) sites (56.94%). Nonspeech-specific NMR sites and speech-specific NMR sites were dorsoventrally distributed in the vPrCG. For language function, 1 of 2 patients in the NMA resection group had language dysfunction at the 1-month follow-up but had recovered by the 3-month follow-up. All patients in the NMA resection group had fine motor dysfunction at the 1- and 3-month follow-ups. CONCLUSIONS The study results demonstrated a functional segmentation of speech-related NMRs in the lateral frontal cortex and that most of the stimulation-induced speech arrest sites are not specific to speech. A better understanding of the spatial distribution of speech-related NMR sites will be helpful in surgical planning and intraoperative mapping and provide in-depth insight into the motor control of speech production.


2018 ◽  
Vol 90 (4) ◽  
pp. 404-411 ◽  
Author(s):  
Rebecca J Broad ◽  
Matt C Gabel ◽  
Nicholas G Dowell ◽  
David J Schwartzman ◽  
Anil K Seth ◽  
...  

BackgroundCorticospinal tract (CST) degeneration and cortical atrophy are consistent features of amyotrophic lateral sclerosis (ALS). We hypothesised that neurite orientation dispersion and density imaging (NODDI), a multicompartment model of diffusion MRI, would reveal microstructural changes associated with ALS within the CST and precentral gyrus (PCG) ‘in vivo’.Methods23 participants with sporadic ALS and 23 healthy controls underwent diffusion MRI. Neurite density index (NDI), orientation dispersion index (ODI) and free water fraction (isotropic compartment (ISO)) were derived. Whole brain voxel-wise analysis was performed to assess for group differences. Standard diffusion tensor imaging (DTI) parameters were computed for comparison. Subgroup analysis was performed to investigate for NODDI parameter differences relating to bulbar involvement. Correlation of NODDI parameters with clinical variables were also explored. The results were accepted as significant where p<0.05 after family-wise error correction at the cluster level, clusters formed with p<0.001.ResultsIn the ALS group NDI was reduced in the extensive regions of the CST, the corpus callosum and the right PCG. ODI was reduced in the right anterior internal capsule and the right PCG. Significant differences in NDI were detected between subgroups stratified according to the presence or absence of bulbar involvement. ODI and ISO correlated with disease duration.ConclusionsNODDI demonstrates that axonal loss within the CST is a core feature of degeneration in ALS. This is the main factor contributing to the altered diffusivity profile detected using DTI. NODDI also identified dendritic alterations within the PCG, suggesting microstructural cortical dendritic changes occur together with CST axonal damage.


Sign in / Sign up

Export Citation Format

Share Document