Solid-state reaction pathways of Sillenite-phase formation studied by high-temperature X-ray diffractometry and differential thermal analysis

2003 ◽  
Vol 38 (5) ◽  
pp. 875-897 ◽  
Author(s):  
Sam Chehab ◽  
Pierre Conflant ◽  
Michel Drache ◽  
Jean-Claude Boivin ◽  
George McDonald
1964 ◽  
Vol 8 ◽  
pp. 78-85 ◽  
Author(s):  
P. K. Gantzel ◽  
S. Langer ◽  
N. L. Baldwin ◽  
F. L. Kester

AbstractThermal analyses of samples of thorium dicarbide in equilibrium with graphite show arrests which indicate phase transitions at 1427 ± 21°C arid 1481 ± 28°C. These thermal effects have been observed on heating and cooling both in standard thermal analysis and in differential thermal analysis using graphite as a reference material. The microstructure of thorium dicarbide samples shows the characteristic “herringbone” pattern of a material which has undergone a martensitic-type transition.A high-temperature X-ray investigation has revealed that the observed thermal arrests correspond to erystallographic transformations. The monodinic modification found at room temperature is stable to 1427°C, at which temperature a tetragonal modification with a0 = 4.235 ± 0.002Å and c0 = 5.408 ± 0.002Å is formed. At 1481°C, the tetragonal is transformed to cubic with a0 = 5.809 ± 0.002 Å. The best agreement between observed and calculated intensities has been obtained with C-C units of 1.5-Å assumed bond length in space groups P42/mmc and Pa3 for the tetragonal and cubic modifications, respectively.


2002 ◽  
Vol 57 (8) ◽  
pp. 868-876 ◽  
Author(s):  
H. Oppermann ◽  
M. Zhang-Preße ◽  
P. Schmidt

The pure ternary phases on the line Yb2O3-SeO2 in thermodynamical equilibrium have been synthesized by solid state reaction and characterized using X-ray powder diffraction and IR-spectroscopy. There exist three phases: Yb2SeO5, Yb2Se3O9 and Yb2Se4O11, the last one with a homogeneiety range extending a higher SeO2-content. The thermal decompositions have been determined by total pressure measurements, and the thermodynamical data of the compounds have been derived. The phase diagram and the phase barogram have been established using the results of thermal analysis and total pressure measurements.


1995 ◽  
Vol 10 (4) ◽  
pp. 296-299 ◽  
Author(s):  
S. T. Misture ◽  
C. Park ◽  
R. L. Snyder ◽  
B. Jobst ◽  
B. Seebacher

Several compositions of the solid solutions (CaxSr1−x)CuO2 and (CaxSr1−x)2CuO3, both of which are found as minor phases in the high-temperature superconductors, were prepared by solid-state reaction. X-ray powder-diffraction patterns for three compositions of (CaxSr1−x)CuO2 and two for (CaxSr1−x)2CuO3 are presented.


2020 ◽  
Vol 18 (11) ◽  
pp. 14-18
Author(s):  
Abbas K. Saadon ◽  
Kareem A. Jasim ◽  
Auday H. Shaban

The high temperature superconductor’s compounds are one of the hot spot field of science, due to their applications in industries. Hg0.8Sb0.2Ba2Ca2Cu3O8+δ and Hg0.8Sb0.2Ba2Ca1Cu2O6+δ, were manufactured using a doable-step of solid state reaction method. The samples were sintered at 800 ° C. The transition temperatures Tc are found from electrically resistively by using four probe techniques. The resistivity become zero when the transition temperature Tc(offset) have 131 and 119 K, and the onset temperature Tc(onset) have 139 K for Hg0.8Sb0.2Ba2Ca2Cu3O8+δ and 132 K for Hg0.8Sb0.2Ba2Ca1Cu2O6+δ. Analysis of X-ray diffraction showed a tetragonal structure with lattice parameters changes for all samples.


1995 ◽  
Vol 10 (3) ◽  
pp. 165-169 ◽  
Author(s):  
W. Pitschke ◽  
W. Bieger ◽  
G. Krabbes ◽  
U. Wiesner

The crystallographic data of YBa2Cu3O7−δ, Y2BaCuO5, BaCu2O2, and YBa4Cu3O9 at high temperatures and p(O2)<10 Pa have been derived on the basis of HT-XRD measurements. Whereas Y2BaCuO5 expands nearly isotropically, YBa2Cu3O7−δ and BaCu2O2 show anisotropic expansions. Furthermore, the first decomposition step of the considered compounds at p(O2)<10 Pa was observed. BaCu2O2 melts congruently at T ≍ 1273 K and Y2BaCuO5 decomposes via a peritectic reaction into Y2O3, Y2BaO4 and melts at T ≍ 1323 K. A solid-state reaction into Y2BaCuO5 and BaCu2O2 was indicated for YBa2Cu3O7−δ at T ≍ 1123 K. Because YBa4Cu3O9 becomes unstable at T ≍ 1123 K, this compound cannot be formed by the primary decomposition reaction of YBa2Cu3O7−δ


2021 ◽  
Vol 904 ◽  
pp. 329-333
Author(s):  
Qun Si Wang ◽  
Jun Feng Ma ◽  
Tian Qing Cui ◽  
Dong Bin Tang ◽  
Qi Zhou

M2SiO4: Tb3+, Mn2+, Nd3+ (M = Mg2+, Ca2+, Sr2+, and Ba2+) phosphors suitable for near-ultraviolet-violet radiation excitation were successfully prepared at 1400 °C in N2 atmosphere by a high-temperature solid-state reaction, and their phase compositions and luminescent performance were also studied by X-ray diffraction (XRD), photoluminescence spectra. Results show that their emission intensity increases in the order of Ca2SiO4 > Mg2SiO4 > Sr2SiO4 > Ba2SiO4 matrix phosphor. Ca1.94SiO4: 0.02Tb3 +, 0.02Mn2+, 0.02Nd2+ phosphor exhibits the best luminescence performance.


2004 ◽  
Vol 29 (1) ◽  
pp. 31-40 ◽  
Author(s):  
G. Bannach ◽  
E. Schnitzler ◽  
C. B. Melios ◽  
M. Ionashiro

The synthesis of sodium 2-chlorobenzylidenepyruvate and its corresponding acid as well as binary, binary together with it's acid or hydroxo-2-chorobenzylidenepyruvate of aluminium (III), gallium (III) and indium (III), were isolated. Chemical analysis, thermogravimetry, derivative thermogravimetry (TG/DTG), simultaneous thermogravimetry-differential thermal analysis (TG-DTA) and X-ray powder diffractometry have been employed to characterize and to study the thermal behaviour of these compounds. The results provided information concerning the stoichiometry, crystallinity, thermal stability and thermal decomposition.


2006 ◽  
Vol 31 (1) ◽  
pp. 21-30 ◽  
Author(s):  
E. C. Rodrigues ◽  
A. B. Siqueira ◽  
E. Y. Ionashiro ◽  
G. Bannach ◽  
M. Ionashiro

Solid-state M-4-MeO-Bz compounds, where M stands for trivalent La, Ce, Pr, Nd and Sm and 4-MeO-Bz is 4-methoxybenzoate, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, polymorphic transformation, ligand's denticity, thermal behaviour and thermal decomposition of the isolated compounds.


Sign in / Sign up

Export Citation Format

Share Document