P III C.3 Cytogenetic analysis of the effect of p53 mutation on chromosome stability in an in vitro human thyroid cancer cell model system

Author(s):  
Elizabeth M. Parry ◽  
Hakan Ulucan
Thyroid ◽  
2013 ◽  
Vol 23 (3) ◽  
pp. 317-328 ◽  
Author(s):  
Geneviève Dom ◽  
Vanessa Chico Galdo ◽  
Maxime Tarabichi ◽  
Gil Tomás ◽  
Aline Hébrant ◽  
...  

2003 ◽  
Vol 272 (1-2) ◽  
pp. 125-134 ◽  
Author(s):  
Branislava Janic ◽  
Todd M. Umstead ◽  
David S. Phelps ◽  
Joanna Floros

2014 ◽  
Vol 21 (6) ◽  
pp. 865-877 ◽  
Author(s):  
Samantha K McCarty ◽  
Motoyasu Saji ◽  
Xiaoli Zhang ◽  
Christina M Knippler ◽  
Lawrence S Kirschner ◽  
...  

Increased p21-activated kinase (PAK) signaling and expression have been identified in the invasive fronts of aggressive papillary thyroid cancers (PTCs), including those withRET/PTC, BRAFV600E, and mutantRASexpression. Functionally, thyroid cancer cell motilityin vitrois dependent on group 1 PAKs, particularly PAK1. In this study, we hypothesize that BRAF, a central kinase in PTC tumorigenesis and invasion, regulates thyroid cancer cell motility in part through PAK activation. Using three well-characterized human thyroid cancer cell lines, we demonstrated in all cell lines thatBRAFknockdown reduced PAK phosphorylation of direct downstream targets. In contrast, inhibition of MEK activity either pharmacologically or with siRNA did not reduce PAK activity, indicating MEK is dispensable for PAK activity. Inhibition of cell migration through BRAF loss is rescued by overexpression of either constitutive active MEK1 or PAK1, demonstrating that both signaling pathways are involved in BRAF-regulated cell motility. To further characterize BRAF–PAK signaling, immunofluorescence and immunoprecipitation demonstrated that both exogenously overexpressed and endogenous PAK1 and BRAF co-localize and physically interact, and that this interaction was enhanced in mitosis. Finally, we demonstrated that acute induction of BRAFV600E expressionin vivoin murine thyroid glands results in increased PAK expression and activity confirming a positive signaling relationshipin vivo. In conclusion, we have identified a signaling pathway in thyroid cancer cells which BRAF activates and physically interacts with PAK and regulates cell motility.


2011 ◽  
Vol 18 (5) ◽  
pp. 613-626 ◽  
Author(s):  
Kirk Jensen ◽  
Aneeta Patel ◽  
Joanna Klubo-Gwiezdzinska ◽  
Andrew Bauer ◽  
Vasyl Vasko

Resistance to anoikis (matrix deprivation-induced apoptosis) is a critical component of the metastatic cascade. Molecular mechanisms underlying resistance to anoikis have not been reported in thyroid cancer cells. For an in vitro model of anoikis, we cultured follicular, papillary, and anaplastic thyroid cancer cell lines on poly-HEMA-treated low-adherent plates. We also performed immunohistochemical analysis of human cancer cells that had infiltrated blood and/or lymphatic vessels. Matrix deprivation was associated with establishment of contacts between floating thyroid cancer cells and formation of multi-cellular spheroids. This process was associated with activation of gap junctional transfer. Increased expression of the gap junction molecule Connexin43 was found in papillary and anaplastic cancer cells forming spheroids. All non-adherent cancer cells showed a lower proliferation rate compared with adherent cells but were more resistant to serum deprivation. AKT was constitutively activated in cancer cells forming spheroids. Inhibition of gap junctional transfer through Connexin43 silencing, or by treatment with the gap junction disruptor carbenoxolone, resulted in loss of pAKT and induction of apoptosis in a cell-type-specific manner. In human thyroid tissue, cancer cells that had infiltrated blood vessels showed morphological similarity to cancer cells forming spheroids in vitro. Intra-vascular cancer cells demonstrated prominent AKT activation in papillary and follicular cancers. Increased Connexin43 immunoreactivity was observed only in intra-vascular papillary cancer cells. Our data demonstrate that establishment of inter-cellular communication contributes to thyroid cancer cell resistance to anoikis. These findings suggest that disruption of gap junctional transfer could represent a potential therapeutic strategy for prevention of metastases.


2010 ◽  
Vol 43 (3) ◽  
pp. 753-760 ◽  
Author(s):  
Trevor Daly ◽  
Eileen Ryan ◽  
S. Aisling Aherne ◽  
Michael N. O’Grady ◽  
Jenny Hayes ◽  
...  

Author(s):  
M Ozen ◽  
A Multani ◽  
S Chang ◽  
A VonEschenbach ◽  
L Chung ◽  
...  

2010 ◽  
Vol 69 (OCE1) ◽  
Author(s):  
B. A. V. Thompson ◽  
S. Al Mutairi ◽  
P. A. Sharp ◽  
R. M. Elliott ◽  
S. J. Fairweather-Tait

Sign in / Sign up

Export Citation Format

Share Document