Sucrose synthase localizes to cellulose synthesis sites in tracheary elements

2001 ◽  
Vol 57 (6) ◽  
pp. 823-833 ◽  
Author(s):  
Vadim V. Salnikov ◽  
Mark J. Grimson ◽  
Deborah P. Delmer ◽  
Candace H. Haigler
Author(s):  
C. H. Haigler ◽  
A. W. Roberts

Tracheary elements, the water-conducting cells in plants, are characterized by their reinforced walls that became thickened in localized patterns during differentiation (Fig. 1). The synthesis of this localized wall involves abundant secretion of Golgi vesicles that export preformed matrix polysaccharides and putative proteins involved in cellulose synthesis. Since the cells are not growing, some kind of endocytotic process must also occur. Many researchers have commented on where exocytosis occurs in relation to the thickenings (for example, see), but they based their interpretations on chemical fixation techniques that are not likely to provide reliable information about rapid processes such as vesicle fusion. We have used rapid freezing to more accurately assess patterns of vesicle fusion in tracheary elements. We have also determined the localization of calcium, which is known to regulate vesicle fusion in plant and animal cells.Mesophyll cells were obtained from immature first leaves of Zinnia elegans var. Envy (Park Seed Co., Greenwood, S.C.) and cultured as described previously with the following exceptions: (a) concentration of benzylaminopurine in the culture medium was reduced to 0.2 mg/l and myoinositol was eliminated; and (b) 1.75ml cultures were incubated in 22 x 90mm shell vials with 112rpm rotary shaking. Cells that were actively involved in differentiation were harvested and frozen in solidifying Freon as described previously. Fractures occurred preferentially at the cell/planchet interface, which allowed us to find some excellently-preserved cells in the replicas. Other differentiating cells were incubated for 20-30 min in 10(μM CTC (Sigma), an antibiotic that fluoresces in the presence of membrane-sequestered calcium. They were observed in an Olympus BH-2 microscope equipped for epi-fluorescence (violet filter package and additional Zeiss KP560 barrier filter to block chlorophyll autofluorescence).


2015 ◽  
Vol 42 (9) ◽  
pp. 909 ◽  
Author(s):  
Yanjiao Dai ◽  
Binglin Chen ◽  
Yali Meng ◽  
Wenqing Zhao ◽  
Zhiguo Zhou ◽  
...  

Global warming has the potential to increase air temperatures by 1.8 to 4.0°C by the end of the 21st century. In order to reveal the effects of increased temperatures on the sucrose metabolism and cellulose synthesis in cotton fibre during its flowering and boll formation stage, field experiments with elevated temperature regimes (32.6/28.6°C, mean daytime/night-time temperature during flowering and boll formation stage during 2010–12, the same below) and ambient temperature regimes (30.1/25.8°C) were conducted. Activities of sucrose synthase and acid/alkaline invertase decreased under elevated temperature in fibre, but activities of sucrose phosphate synthase were increased. Callose content increased, but sucrose content decreased within the cotton fibre under elevated temperature. The disparity of callose content and sucrose content between the two temperature regimes decreased with the number of days post anthesis, indicating that the effects of elevated temperature on both sucrose content and cellulose content were diminished as the boll matured. Due to the dynamics of the carbohydrate content and associated enzyme activities, we hypothesise that the restrained sucrose metabolism and cellulose biosynthesis under elevated temperatures were mainly attributed to the changed activities of sucrose synthase and invertase. Furthermore, 32.6/28.6°C had a negative effect on the cellulose synthesis compared with 30.1/25.8°C.


2010 ◽  
Vol 51 (2) ◽  
pp. 294-301 ◽  
Author(s):  
S. Fujii ◽  
T. Hayashi ◽  
K. Mizuno

Author(s):  
John Kuo ◽  
John S. Pate

Our understanding of nutrient transfer between host and flowering parasitic plants is usually based mainly on physiological concepts, with little information on haustorial structure related to function. The aim of this paper is to study the haustorial interface and possible pathways of water and solute transfer between a number of host and parasites.Haustorial tissues were fixed in glutaraldehyde and embedded in glycol methacrylate (LM), or fixed in glutaraldehyde then OsO4 and embedded in Spurr’s resin (TEM).Our study shows that lumen to lumen continuity occurs between tracheary elements of a host and four S.W. Australian species of aerial mistletoes (Fig. 1), and some root hemiparasites (Exocarpos spp. and Anthobolus foveolatus) (Fig. 2). On the other hand, haustorial interfaces of the root hemiparasites Olax phyllanthi and Santalum (2 species) are comprised mainly of parenchyma, as opposed to terminating tracheads or vessels, implying that direct solution transfer between partners via vessels or tracheary elements may be limited (Fig. 3).


Author(s):  
George C. Ruben ◽  
William Krakow

Tobacco primary cell wall and normal bacterial Acetobacter xylinum cellulose formation produced a 36.8±3Å triple-stranded left-hand helical microfibril in freeze-dried Pt-C replicas and in negatively stained preparations for TEM. As three submicrofibril strands exit the wall of Axylinum , they twist together to form a left-hand helical microfibril. This process is driven by the left-hand helical structure of the submicrofibril and by cellulose synthesis. That is, as the submicrofibril is elongating at the wall, it is also being left-hand twisted and twisted together with two other submicrofibrils. The submicrofibril appears to have the dimensions of a nine (l-4)-ß-D-glucan parallel chain crystalline unit whose long, 23Å, and short, 19Å, diagonals form major and minor left-handed axial surface ridges every 36Å.The computer generated optical diffraction of this model and its corresponding image have been compared. The submicrofibril model was used to construct a microfibril model. This model and corresponding microfibril images have also been optically diffracted and comparedIn this paper we compare two less complex microfibril models. The first model (Fig. 1a) is constructed with cylindrical submicrofibrils. The second model (Fig. 2a) is also constructed with three submicrofibrils but with a single 23 Å diagonal, projecting from a rounded cross section and left-hand helically twisted, with a 36Å repeat, similar to the original model (45°±10° crossover angle). The submicrofibrils cross the microfibril axis at roughly a 45°±10° angle, the same crossover angle observed in microflbril TEM images. These models were constructed so that the maximum diameter of the submicrofibrils was 23Å and the overall microfibril diameters were similar to Pt-C coated image diameters of ∼50Å and not the actual diameter of 36.5Å. The methods for computing optical diffraction patterns have been published before.


Sign in / Sign up

Export Citation Format

Share Document