Determination of negative ion density in reactive gas plasmas using ion acoustic waves

2002 ◽  
Vol 407 (1-2) ◽  
pp. 204-208 ◽  
Author(s):  
Masako Shindo ◽  
Yoshinobu Kawai
2015 ◽  
Vol 81 (5) ◽  
Author(s):  
Biswajit Sahu ◽  
Barnali Pal ◽  
Swarup Poria ◽  
Rajkumar Roychoudhury

The nonlinear properties of the ion acoustic waves (IAWs) in a three-component quantum plasma comprising electrons, and positive and negative ions are investigated analytically and numerically by employing the quantum hydrodynamic (QHD) model. The Sagdeev pseudopotential technique is applied to obtain the small-amplitude soliton solution. The effects of the quantum parameter$H$, positive to negative ion density ratio${\it\beta}$and Mach number on the nonlinear structures are investigated. It is found that these factors can significantly modify the properties of the IAWs. The existence of quasi-periodic and chaotic oscillations in the system is established. Switching from quasi-periodic to chaotic is possible with the variation of Mach number or quantum parameter$H$.


1999 ◽  
Vol 61 (2) ◽  
pp. 177-189 ◽  
Author(s):  
W. M. MOSLEM

The nonlinear wave structures of small-amplitude ion acoustic waves in a warm plasma with adiabatic negative-ion, positron and electron constituents traversed by a warm electron beam (with different temperatures) in the vicinity of the critical negative-ion density are investigated using reductive perturbation method. The basic set of equations is reduced to an evolution equation that includes quadratic and cubic nonlinearities. The effective potential of this equation agrees exactly, for small wave amplitudes, with the Sagdeev potential obtained from the original fluid equations using a pseudopotential method. This implies that the evolution equation holds not only in the vicinity of the critical negative-ion density but also in the whole range of negative-ion density under the condition of small wave amplitude.


1995 ◽  
Vol 54 (3) ◽  
pp. 295-308 ◽  
Author(s):  
S. K. El-Labany

The derivative expansion perturbation method is applied to investigate the modulation of nonlinear ion-acoustic waves in a weakly relativistic warm plasma. At the second order of perturbation theory, a nonlinear Schrödingertype equation for the complex amplitude of the perturbed ion density is obtained. The coefficients in this equation show that the condition of modulational stability is modified by the relativistic effect as well as by the finite ion temperature. The association between the small-wavenumber limit of the nonlinear Schrödinger-type equation and the oscillatory solution of the Korteweg-de Vries equation obtained by reductive perturbation theory is considered. Different limits are considered in order to compare with previous work.


1991 ◽  
Vol 19 (3) ◽  
pp. 545-547 ◽  
Author(s):  
J.L. Cooney ◽  
M.T. Gavin ◽  
K.E. Lonngren

1997 ◽  
Vol 50 (2) ◽  
pp. 319 ◽  
Author(s):  
K. K. Mondal ◽  
S. N. Paul ◽  
A. Roychowdhury

The dispersion relation of an ion-acoustic wave propagating through a collisionless, unmagnetised plasma, having warm isothermal electrons and cold positive and negative ions has been derived. It is seen that the ion-acoustic wave will be unstable in the presence of streaming of ions. Instability of the wave is graphically analysed for the plasma having (H+, O¯) ions, (H+, O2¯) ions, (H+, SF5¯) ions, (He+, Cl¯) ions and (Ar+, O¯) ions with different negative ion concentration and relativistic velocity.


Sign in / Sign up

Export Citation Format

Share Document