Nonlinear dynamics of ion acoustic waves in quantum pair-ion plasmas

2015 ◽  
Vol 81 (5) ◽  
Author(s):  
Biswajit Sahu ◽  
Barnali Pal ◽  
Swarup Poria ◽  
Rajkumar Roychoudhury

The nonlinear properties of the ion acoustic waves (IAWs) in a three-component quantum plasma comprising electrons, and positive and negative ions are investigated analytically and numerically by employing the quantum hydrodynamic (QHD) model. The Sagdeev pseudopotential technique is applied to obtain the small-amplitude soliton solution. The effects of the quantum parameter$H$, positive to negative ion density ratio${\it\beta}$and Mach number on the nonlinear structures are investigated. It is found that these factors can significantly modify the properties of the IAWs. The existence of quasi-periodic and chaotic oscillations in the system is established. Switching from quasi-periodic to chaotic is possible with the variation of Mach number or quantum parameter$H$.

1997 ◽  
Vol 50 (2) ◽  
pp. 319 ◽  
Author(s):  
K. K. Mondal ◽  
S. N. Paul ◽  
A. Roychowdhury

The dispersion relation of an ion-acoustic wave propagating through a collisionless, unmagnetised plasma, having warm isothermal electrons and cold positive and negative ions has been derived. It is seen that the ion-acoustic wave will be unstable in the presence of streaming of ions. Instability of the wave is graphically analysed for the plasma having (H+, O¯) ions, (H+, O2¯) ions, (H+, SF5¯) ions, (He+, Cl¯) ions and (Ar+, O¯) ions with different negative ion concentration and relativistic velocity.


1999 ◽  
Vol 61 (2) ◽  
pp. 177-189 ◽  
Author(s):  
W. M. MOSLEM

The nonlinear wave structures of small-amplitude ion acoustic waves in a warm plasma with adiabatic negative-ion, positron and electron constituents traversed by a warm electron beam (with different temperatures) in the vicinity of the critical negative-ion density are investigated using reductive perturbation method. The basic set of equations is reduced to an evolution equation that includes quadratic and cubic nonlinearities. The effective potential of this equation agrees exactly, for small wave amplitudes, with the Sagdeev potential obtained from the original fluid equations using a pseudopotential method. This implies that the evolution equation holds not only in the vicinity of the critical negative-ion density but also in the whole range of negative-ion density under the condition of small wave amplitude.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Barsha Pradhan ◽  
Sayan Mukherjee ◽  
Asit Saha ◽  
Hayder Natiq ◽  
Santo Banerjee

AbstractMultistability and chaotic scenario of arbitrary amplitude ion-acoustic waves in a quantum plasma consisting of negative ions, positive ions and electrons are investigated. The normalized basic equations are transformed to a four dimensional conservative dynamical system by introducing a travelling wave variable. Stability of the fixed points for the corresponding linearized system is briefly examined. Chaotic and quasi-periodic features of the arbitrary amplitude ion-acoustic waves are discussed using effective tools, viz. phase orientations, time series graph and graphs of Lyapunov exponents. Multistability phenomena is established with the help of phase spaces, largest Lyapunov exponents and cross-section of basins of attraction. The chaotic phenomena is further verified by 0−1 test. Results of this study can be applied in understanding dynamical phenomena of arbitrary amplitude ion-acoustic waves in quantum pair-ion plasmas.


2020 ◽  
Vol 75 (8) ◽  
pp. 687-697 ◽  
Author(s):  
Jharna Tamang ◽  
Asit Saha

AbstractDynamical properties of nonlinear ion-acoustic waves (IAWs) in multi-pair plasmas (MPPs) constituting adiabatic ion fluids of positive and negative charges, and q-nonextensive electrons and positrons are examined. The nonlinear Schrödinger equation (NLSE) is considered to study the dynamics of IAWs in a nonextensive MPP system. Bifurcation of the dynamical system obtained from the NLSE shows that the system supports various wave forms such as, nonlinear periodic wave, kink and anti-kink waves in different ranges of q. The analytical solutions for ion-acoustic nonlinear periodic wave, kink and anti-kink waves are obtained. The impacts of system parameters such as, nonextensive parameter (q), mass ratio of negative and positive ions (μ1), number density ratio of positive and negative ions (μ2), number density ratio of positrons and negative ions (μp), temperature ratio of positive ions and electrons (σ2) and temperature ratio of electrons and positrons (δ) on IAW solutions are bestowed. The results of this study are applicable to understand different dynamical behaviors of nonlinear IAWs found in the Earth’s ionosphere, such as, D-region [H+, ${\mathrm{O}}_{2}^{-}$] and F-region [H+, H−] and multipair plasma system laboratory [C+, C−].


1997 ◽  
Vol 50 (2) ◽  
pp. 309 ◽  
Author(s):  
Y. N. Nejoh

The nonlinear wave structures of large amplitude ion-acoustic waves are studied in a plasma with positrons. We have presented the region of existence of the ion-acoustic waves by analysing the structure of the pseudopotential. The region of existence sensitively depends on the positron to electron density ratio, the ion to electron mass ratio and the positron to electron temperature ratio. It is shown that the maximum Mach number increases as the positron temperature increases and the region of existence of the ion-acoustic waves spreads as the positron temperature increases. The present theory is applicable to analyse large amplitude ion-acoustic waves associated with positrons which may occur in space plasmas.


2000 ◽  
Vol 63 (4) ◽  
pp. 343-353 ◽  
Author(s):  
S. K. EL-LABANY ◽  
S. A. EL-WARRAKI ◽  
W. M. MOSLEM

Cylindrical ion-acoustic solitons are investigated in a warm plasma with negative ions and multiple-temperature electrons through the derivation of a cylindrical Korteweg–de Vries equation using a reductive perturbation theory. The results are compared with those for the corresponding planar solitons.


Sign in / Sign up

Export Citation Format

Share Document