Biologically active polypeptides from the tropical sea anemone Radianthus macrodactylus

Toxicon ◽  
2002 ◽  
Vol 40 (8) ◽  
pp. 1197-1217 ◽  
Author(s):  
Margarita M Monastyrnaya ◽  
Tatyana A Zykova ◽  
Olga V Apalikova ◽  
Tatyana V Shwets ◽  
Emma P Kozlovskaya
2007 ◽  
Vol 72 (3) ◽  
pp. 301-306 ◽  
Author(s):  
I. N. Sokotun ◽  
A. P. Il’ina ◽  
M. M. Monastyrnaya ◽  
E. V. Leychenko ◽  
A. A. Es’kov ◽  
...  

2017 ◽  
Vol 139 ◽  
pp. 408-415 ◽  
Author(s):  
Melanie A. Trenfield ◽  
Joost W. van Dam ◽  
Andrew J. Harford ◽  
David Parry ◽  
Claire Streten ◽  
...  

2019 ◽  
Vol 3 (2) ◽  
pp. 117-136
Author(s):  
Kalina R.S. Monastyrnaya M.M.

Sea anemones are well-spread everywhere in the World Ocean and represent the most ancient active poisonous organisms. Their main instrument of attack on other animals are the nematocysts – stinging organelles with the curtailed hollow thread with poisonous edge on the end. In order to attract their potential victims, they use fluorescent proteins. These proteins became a separate object of research as genetically coded markers for the observation of activity of promotors of genes. The poisonous secret of sea anemones is characterized by the presence of maximum number of peptides of various structural classes and spatial structures among the studied land and marine organisms (bees, spiders, scorpions, snakes ect.). This fact complicates the identification of sea anemones' secret and its differentiation from poisons of animals of other taxons, if the concrete source of its origin is unknown. The toxicity of some biologically active sea anemone peptides (RpI, RpIII) at intravenous administration to experimental animals is comparable with that of the most well-known and dangerous representatives of natural toxins with the similar mechanism of action (an alpha-hemolysine and tetrodotoxin), or chemical warfare agents, such as sarin and hydrogen cyanide. Based on their toxic effect, the biologically active sea anemone peptides generally can be classified as neurotoxins due to their impact on the functioning of sodium channels in the cells of the nervous system of animals. cardiotoxic effect of sea anemone secret is caused by the specificity of interaction between its separate neurotoxins and one of the sub-types of sodium channels of muscle cells, characteristic for heart tissues. The main ways of identification of sea anemone neurotoxins in samples (for example, during the investigation of biological crimes) can be sequence by Edman`s method or tandem mass spectrometry (the analysis of fragments of toxin molecule for the establishment of its structure). Further study on the mechanisms of interaction between the sea anemone neurotoxins and the ion channels of the cells of nervous and muscular systems may result in the creation of medicines for treatment of channelopathy, as well as pluripotential antidotes, blocking the toxins, that influence on sodium channels


PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12770
Author(s):  
Jason S. Presnell ◽  
Elizabeth Wirsching ◽  
Virginia M. Weis

Exaiptasia diaphana, a tropical sea anemone known as Aiptasia, is a tractable model system for studying the cellular, physiological, and ecological characteristics of cnidarian-dinoflagellate symbiosis. Aiptasia is widely used as a proxy for coral-algal symbiosis, since both Aiptasia and corals form a symbiosis with members of the family Symbiodiniaceae. Laboratory strains of Aiptasia can be maintained in both the symbiotic (Sym) and aposymbiotic (Apo, without algae) states. Apo Aiptasia allow for the study of the influence of symbiosis on different biological processes and how different environmental conditions impact symbiosis. A key feature of Aiptasia is the ease of propagating both Sym and Apo individuals in the laboratory through a process called pedal laceration. In this form of asexual reproduction, small pieces of tissue rip away from the pedal disc of a polyp, then these lacerates eventually develop tentacles and grow into new polyps. While pedal laceration has been described in the past, details of how tentacles are formed or how symbiotic and nutritional state influence this process are lacking. Here we describe the stages of development in both Sym and Apo pedal lacerates. Our results show that Apo lacerates develop tentacles earlier than Sym lacerates, while over the course of 20 days, Sym lacerates end up with a greater number of tentacles. We describe both tentacle and mesentery patterning during lacerate development and show that they form through a single pattern in early stages regardless of symbiotic state. In later stages of development, Apo lacerate tentacles and mesenteries progress through a single pattern, while variable patterns were observed in Sym lacerates. We discuss how Aiptasia lacerate mesentery and tentacle patterning differs from oral disc regeneration and how these patterning events compare to postembryonic development in Nematostella vectensis, another widely-used sea anemone model. In addition, we demonstrate that Apo lacerates supplemented with a putative nutrient source developed an intermediate number of tentacles between un-fed Apo and Sym lacerates. Based on these observations, we hypothesize that pedal lacerates progress through two different, putatively nutrient-dependent phases of development. In the early phase, the lacerate, regardless of symbiotic state, preferentially uses or relies on nutrients carried over from the adult polyp. These resources are sufficient for lacerates to develop into a functional polyp. In the late phase of development, continued growth and tentacle formation is supported by nutrients obtained from either symbionts and/or the environment through heterotrophic feeding. Finally, we advocate for the implementation of pedal lacerates as an additional resource in the Aiptasia model system toolkit for studies of cnidarian-dinoflagellate symbiosis.


2001 ◽  
Vol 204 (20) ◽  
pp. 3443-3456 ◽  
Author(s):  
Sara J. Sawyer ◽  
Leonard Muscatine

SUMMARY Temperature-induced bleaching in symbiotic cnidarians is a result of the detachment and loss of host cells containing symbiotic algae. We tested the hypothesis that host cell detachment is evoked through a membrane thermotropic event causing an increase in intracellular calcium concentration, [Ca2+]i, which could then cause collapse of the cytoskeleton and perturb cell adhesion. Electron paramagnetic resonance measurements of plasma membranes from the tropical sea anemone Aiptasia pulchella and the Hawaiian coral Pocillopora damicornis labeled with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) revealed no membrane thermotropic event. In addition, intracellular imaging using Fura-2AM as well as labeling anemones with 45Ca revealed no significant change in [Ca2+]i. However, bleaching could be evoked at ambient temperature with 25 mmol l–1 caffeine without affecting [Ca2+]i. [Ca2+]i could be altered with ionomycin in isolated host cells, but ionomycin could not induce bleaching in A. pulchella. As caffeine can affect levels of intracellular protein phosphorylation, the ability of other agents that alter intracellular levels of protein phosphorylation to evoke bleaching was investigated. The protein phosphatase inhibitor vanadate could induce bleaching in A. pulchella. Two-dimensional gels of 32P-labeled proteins from cold-shocked, caffeine-treated and control anemones show that both temperature shock and caffeine alter the array of phosphorylated host soluble proteins. We conclude that cnidarian bleaching is linked to a temperature-induced alteration in protein phosphorylation.


1979 ◽  
Vol 66 (4) ◽  
pp. 207-208
Author(s):  
D. Mebs ◽  
E. Gebauer

Toxicon ◽  
1993 ◽  
Vol 31 (12) ◽  
pp. 1567-1579 ◽  
Author(s):  
Kong Soo Khoo ◽  
Wai Kuen Kam ◽  
Hoon Eng Khoo ◽  
P. Gopalakrishnakone ◽  
Maxey C.M. Chung

Sign in / Sign up

Export Citation Format

Share Document