Bronchial epithelial cell–derived cytokine IL-10 and lung fibroblast proliferation

2001 ◽  
Vol 33 (1-2) ◽  
pp. 352-354 ◽  
Author(s):  
A Dosanjh ◽  
R.E Morris ◽  
B Wan
1995 ◽  
Vol 269 (3) ◽  
pp. L377-L387 ◽  
Author(s):  
Y. Nakamura ◽  
L. Tate ◽  
R. F. Ertl ◽  
M. Kawamoto ◽  
T. Mio ◽  
...  

Chronic bronchitis frequently leads to irreversible airway obstruction. Alteration of airway architecture with abnormal airway connective tissue is thought to play an important role in this process. We hypothesized that the epithelial cells that line the airways modulate the development of peribronchial fibrosis and fixed airway obstruction by directing fibroblast proliferation. To assess this, we examined stimulatory activities for human lung fibroblast proliferation in bovine bronchial epithelial cell-conditioned medium. The conditioned medium stimulated the proliferation of fibroblasts in a serum-free culture system in a concentration-dependent manner. The fibroblast growth stimulatory activity was heterogenous, with molecular masses of > 50 and approximately 10 kDa. Bronchial epithelial cell-conditioned medium also contained fibroblast growth inhibitory factors, including both transforming growth factor (TGF)-beta and, based on indomethacin sensitivity, cyclooxygenase products. TGF-beta appeared to contribute to the morphological change of fibroblasts induced by the conditioned medium. Co-culture of human lung fibroblasts with bronchial epithelial cells resulted in a stimulation of fibroblast proliferation. In summary, airway epithelial cells appear to regulate fibroblast proliferation and may play a role in peribronchial fibrosis in chronic bronchitis.


2019 ◽  
Vol 20 (7) ◽  
pp. 1678 ◽  
Author(s):  
Yi-Chen Lee ◽  
Chun-Yu Lin ◽  
Yen-Hsu Chen ◽  
Wen-Chin Chiu ◽  
Yen-Yun Wang ◽  
...  

Acute lung injury (ALI) is a life-threatening syndrome characterized by acute and severe hypoxemic respiratory failure. Visfatin, which is known as an obesity-related cytokine with pro-inflammatory activities, plays a role in regulation of inflammatory cytokines. The mechanisms of ALI remain unclear in critically ill patients. Survival in ALI patients appear to be influenced by the stress generated by mechanical ventilation and by ALI-associated factors that initiate the inflammatory response. The objective for this study was to understand the mechanisms of how visfatin regulates inflammatory cytokines and promotes ALI. The expression of visfatin was evaluated in ALI patients and mouse sepsis models. Moreover, the underlying mechanisms were investigated using human bronchial epithelial cell lines, BEAS-2B and NL-20. An increase of serum visfatin was discovered in ALI patients compared to normal controls. Results from hematoxylin and eosin (H&E) and immunohistochemistry staining also showed that visfatin protein was upregulated in mouse sepsis models. Moreover, lipopolysaccharide (LPS) induced visfatin expression, activated the STAT3/NFκB pathway, and increased the expression of pro-inflammatory cytokines, including IL1-β, IL-6, and TNF-α in human bronchial epithelial cell lines NL-20 and BEAS-2B. Co-treatment of visfatin inhibitor FK866 reversed the activation of the STAT3/NFκB pathway and the increase of pro-inflammatory cytokines induced by LPS. Our study provides new evidence for the involvement of visfatin and down-stream events in acute lung injury. Further studies are required to confirm whether the anti-visfatin approaches can improve ALI patient survival by alleviating the pro-inflammatory process.


2003 ◽  
Vol 80 (4) ◽  
pp. 444-450 ◽  
Author(s):  
Jae-Kyung Myung ◽  
Kurt Krapfenbauer ◽  
Rachel Weitzdoerfer ◽  
Andreas Peyrl ◽  
Michael Fountoulakis ◽  
...  

1994 ◽  
Vol 102 (12) ◽  
pp. 1068-1072 ◽  
Author(s):  
X Y Yu ◽  
N Takahashi ◽  
T L Croxton ◽  
E W Spannhake

Sign in / Sign up

Export Citation Format

Share Document