Plasma source low-energy ion-enhanced deposition of thin films

Vacuum ◽  
2000 ◽  
Vol 57 (4) ◽  
pp. 327-338 ◽  
Author(s):  
M.K. Lei ◽  
J.D. Chen ◽  
Y. Wang ◽  
Z.L. Zhang
Keyword(s):  
Author(s):  
Elif Bilgilisoy ◽  
Rachel M. Thorman ◽  
Michael S. Barclay ◽  
Hubertus Marbach ◽  
D. Howard Fairbrother

Author(s):  
Amal Ben Hadj Mabrouk ◽  
Christophe Licitra ◽  
Antoine Chateauminois ◽  
Marc Veillerot

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
J. P. Ruf ◽  
H. Paik ◽  
N. J. Schreiber ◽  
H. P. Nair ◽  
L. Miao ◽  
...  

AbstractSuperconductivity is among the most fascinating and well-studied quantum states of matter. Despite over 100 years of research, a detailed understanding of how features of the normal-state electronic structure determine superconducting properties has remained elusive. For instance, the ability to deterministically enhance the superconducting transition temperature by design, rather than by serendipity, has been a long sought-after goal in condensed matter physics and materials science, but achieving this objective may require new tools, techniques and approaches. Here, we report the transmutation of a normal metal into a superconductor through the application of epitaxial strain. We demonstrate that synthesizing RuO2 thin films on (110)-oriented TiO2 substrates enhances the density of states near the Fermi level, which stabilizes superconductivity under strain, and suggests that a promising strategy to create new transition-metal superconductors is to apply judiciously chosen anisotropic strains that redistribute carriers within the low-energy manifold of d orbitals.


RSC Advances ◽  
2020 ◽  
Vol 10 (19) ◽  
pp. 11219-11224
Author(s):  
Wei Zhang ◽  
Xiaoxiong Jia ◽  
Rui Wang ◽  
Huihui Liu ◽  
Zhengyu Xiao ◽  
...  

Thin films with perpendicular magnetic anisotropy (PMA) play an essential role in the development of technologies due to their excellent thermal stability and potential application in devices with high density, high stability, and low energy consumption.


2021 ◽  
pp. 126323
Author(s):  
Joseph A. De Mesa ◽  
Angelo P. Rillera ◽  
Melvin John F. Empizo ◽  
Nobuhiko Sarukura ◽  
Roland V. Sarmago ◽  
...  

2002 ◽  
Vol 151-152 ◽  
pp. 189-193 ◽  
Author(s):  
G.G. Fuentes ◽  
D. Cáceres ◽  
I. Vergara ◽  
E. Elizalde ◽  
J.M. Sanz
Keyword(s):  
Ion Beam ◽  

Author(s):  
I.A. Maximov ◽  
A.B. Nadiradze ◽  
R.R. Rakhmatullin ◽  
V.A. Smirnov ◽  
R.E. Tikhomirov ◽  
...  

The results of an experimental study of the attenuation of the fluxes of the low-energy component of the plasma formed during the operation of electric propulsion engines (ERE), ventilation holes (VH) of the non-sealed equipment compartment (NSEC) of the spacecraft (SC) are presented. Authors studied the attenuation of plasma fluxes by standard VHs made in honeycomb panels that form the NSEC. A Hall-effect engine of the SPT-70 type was used as a plasma source. The experiment consisted of measuring the plasma concentration at the inlet and outlet of the VH. The concentration at the inlet was measured with a flat Langmuir probe, and at the outlet with a Faraday probe, which allows collecting all ions passing through the VH. The aim of the work was to study the weakening of the fluxes of the lowenergy component of the EJE plasma when passing through the VH in the honeycomb-nels that form the NSEC. Based on the experimental data, a semi-empirical model was constructed that describes the dependence of the attenuation coefficient of plasma flows on the geometric parameters of the vent-holes. It has been established that a vent-holes of this design attenuates the plasma flows by 102 ... 104 times. The largest contribution to the weakening of plasma fluxes is made by the honeycomb filler, which is due to the recombination of ions during their collision with the channel walls. Taking into account the attenuation of the fluxes of the low-energy component of the plasma of electric rocket engines by ventilation holes is a key stage in assessing the effect of plasma on the power on-board equipment of spacecraft and should be used by spacecraft developers when analyzing the resistance to this factor.


2021 ◽  
pp. 130984
Author(s):  
Amardeep Bharti ◽  
Richa Bhardwaj ◽  
Kanika Upadhyay ◽  
Harkawal Singh ◽  
Asokan Kandasami ◽  
...  

1991 ◽  
Vol 237 ◽  
Author(s):  
Harry A. Atwater ◽  
C. J. Tsai ◽  
S. Nikzad ◽  
M.V.R. Murty

ABSTRACTRecent progress in low energy ion-surface interactions, and the early stages of ion-assisted epitaxy of semiconductor thin films is described. Advances in three areas are discussed: dynamics of displacements and defect incorporation, nucleation mechanisms, and the use of ion bombardment to modify epitaxial growth kinetics in atrulysurface-selective manner.


Sign in / Sign up

Export Citation Format

Share Document