1-Aminocyclopropane-l-carboxylic Acid - An Intermediate of the Ethylene Biosynthesis in Higher Plants

1979 ◽  
Vol 92 (4) ◽  
pp. 285-294 ◽  
Author(s):  
Klaus Lürssen ◽  
Klaus Naumann ◽  
Rolf Schröder
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Haowen Luo ◽  
Bin Du ◽  
Longxin He ◽  
Axiang Zheng ◽  
Shenggang Pan ◽  
...  

Abstract Background Selenium (Se) is a beneficial element for higher plants and essential for mammals. To study the effect of the foliar application of sodium selenate on fragrant rice performance, a pot experiment was conducted in Guangdong, China. At the initial heading stage, one-time foliar application of sodium selenate with concentrations of 0, 10, 20, 30, 40 and 50 μmol·L− 1 (named CK, Se1, Se2, Se3, Se4 and Se5, respectively) were foliar applied on two fragrant rice varieties, ‘Meixiangzhan-2’ and ‘Xiangyaxiangzhan’. Results Selenate application at the initial heading stage not only improved the grain yield of fragrant rice by increasing the seed-setting rate and grain weight, but also promoted the grain quality by increasing crude protein contents and lowering the chalky rice rate. Furthermore, Se applications enhanced the biosynthesis of 2-acetyl-1- pyrroline (2-AP), the main aromatic compound, by increasing the contents of precursors (△1- pyrroline, proline and pyrroline-5-carboxylic acid (P5C)) and the activities of enzymes (proline dehydrogenase (PRODH), △1-pyrroline-5-carboxylic acid synthetase (P5CS), and ornithine aminotransferase (OAT)) in fragrant rice. The results also showed that foliar application of sodium selenate enhanced the antioxidant system of both varieties by promoting the activities of peroxidase (POD), superoxide dismutase (SOD), catalase (CAT) and reducing the contents of malondialdehyde (MDA). Furthermore, the real-time PCR analyses depicted that foliar application of selenate up-regulated the GPX1, GPX4 and CATC transcripts. The higher antioxidative enzymatic activities might strength the stress resistant to ensure the stability of yield in fragrant rice form abiotic stress. Conclusions Foliar applications of sodium selenate at the initial heading stage increased the grain 2-AP content by enhancing the biosynthesis-related enzymes and precursors. The grain yield and quality of fragrant rice also increased due to selenate application. Furthermore, foliar application of selenate promoted the activities of enzymes such as POD, SOD and CAT and up-regulated the expression of gene GPX4, GPX1 and CATC.


2006 ◽  
Vol 12 (34) ◽  
pp. 8835-8846 ◽  
Author(s):  
Arianna Bassan ◽  
Tomasz Borowski ◽  
Christopher J. Schofield ◽  
Per E. M. Siegbahn

HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 596g-597
Author(s):  
Claudinei Andreoli ◽  
Anwar A. Khan

The level of 1-aminocyclopropane-1-carboxylic acid (ACC) was 0.55 nmol.g-1 in dry lettuce (Lactuca sativa cv. Emperor) seeds. After 4h soak at 25°, 35° and 35°C+ KIN (kinetin, 50μM), the levels were 0, 0.2 and 1.14 nmol.g-1 seeds, respectively. The level of ACC was higher at 35°+KIN than at 35°C for up to 16h soak. No ACC was detectable at 25°C during 2 to 16h soak. In the presence of 50μM ABA, ACC level decreased to 0.2 nmol.g-1 at 4h soak and to zero level during 8 to 16h soak. The level of l-(malonylamino) cyclopropane-1-carboxylic acid (MACC), in dry seeds was 14 nmol.g-1. Exposure to 35°C in the presence or absence of KIN increased the level to 40-42 nmol.g-1 within 2h soaking, while at 25° only a slight increase (23 nmol.g-1) occurred. As in the case of ACC, the level of MACC was higher at 35°C+ KIN than at 35° or 25° for up to 16h soak.When seeds were soaked in ABA, the pattern of MACC produced was similar to that produced at 35°C. The results indicate that ACC synthase activity is enhanced by the addition of KIN at 35°C resulting in increased synthesis and/or accumulation of ACC and MACC. The relationship of ethylene biosynthesis to changes during stress imposition and alleviation by various factors will be discussed.


2008 ◽  
Vol 133 (2) ◽  
pp. 290-299 ◽  
Author(s):  
Ahmad Sattar Khan ◽  
Zora Singh

This research was carried out to extend the postharvest storage of japanese plum (Prunus salicina Lindl. cv. Tegan Blue), which has a short shelf life limiting its export potential. The effects of 1.0 μL·L−1 1-methylcyclopropene (1-MCP) and modified atmosphere packaging (MAP), alone or in combination, on quality of mature japanese plum fruit during storage (0 ± 1 °C and 90% ± 5% relative humidity) were investigated. The activities of enzymes of ethylene biosynthesis [1-aminocyclopropane-1-carboxylic acid synthase (ACS), 1-aminocyclopropane-1-carboxylic acid oxidase (ACO), and 1-aminocyclopropane-1-carboxylic acid (ACC) content] and those of cell wall-associated enzymes [exo-polygalacturonase (exo-PG), endo-polygalacturonase (endo-PG), pectin esterase (PE), and endo-1,4-β-D-glucanase (EGase)] were also measured. 1-MCP-treated fruit stored in normal atmosphere or in MAP had lower ACC content and inhibited ethylene production with reduced ACS and ACO activities compared with fruit stored in MAP and in normal atmosphere. Similarly, 1-MCP-treated fruit, stored either in normal atmosphere or in MAP, were firmer with reduced exo-PG, endo-PG, PE, and EGase activities compared with fruit stored in MAP and in normal atmosphere. During storage as well as during ripening, fruit stored in MAP exhibited a higher rate of respiration compared with other treatments. MAP exacerbated the effect of 1-MCP in reduction of ethylene production and fruit softening. 1-MCP application in combination with MAP after 5 and 7 weeks of storage delayed the fruit ripening by 10 and 8 days in contrast with control fruit, respectively. During storage, and as well as in ripe fruit, weight loss was reduced in fruit stored in MAP either with or without 1-MCP application. Control fruit and 1-MCP-treated fruit, stored in a normal atmosphere or in MAP, had the same values for the following parameters: chromaticity value L*, C*, and hue angle, titratable acidity, and concentrations of soluble solids, ascorbic acid, and total antioxidants. In conclusion, 1-MCP application in combination with MAP can be used effectively to reduce the ethylene biosynthesis and fruit softening during cold storage and to extend the storage life up to 7 weeks followed by 8 d of ripening without any adverse effects on the quality of ripe fruit.


Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 907 ◽  
Author(s):  
Eirini G. Poulaki ◽  
Maria-Dimitra Tsolakidou ◽  
Danai Gkizi ◽  
Iakovos S. Pantelides ◽  
Sotirios E. Tjamos

Verticillium dahliae is one of the most destructive soilborne plant pathogens since it has a broad host range and there is no chemical disease management. Therefore, there is a need to unravel the molecular interaction between the pathogen and the host plant. For this purpose, we examined the role of 1-aminocyclopropane-1-carboxylic acid synthases (ACSs) of Arabidopsis thaliana upon V. dahliae infection. We observed that the acs2, acs6, and acs2/6 plants are partially resistant to V. dahliae, since the disease severity of the acs mutants was lower than the wild type (wt) Col-0 plants. Quantitative polymerase chain reaction analysis revealed that acs2, acs6, and acs2/6 plants had lower endophytic levels of V. dahliae than the wt. Therefore, the observed reduction of the disease severity in the acs mutants is rather associated with resistance than tolerance. It was also shown that ACS2 and ACS6 were upregulated upon V. dahliae infection in the root and the above ground tissues of the wt plants. Furthermore, the addition of 1-aminocyclopropane-1-carboxylic acid (ACC) and aminooxyacetic acid (AOA), the competitive inhibitor of ACS, in wt A. thaliana, before or after V. dahliae inoculation, revealed that both substances decreased Verticillium wilt symptoms compared to controls irrespectively of the application time. Therefore, our results suggest that the mechanism underpinning the partial resistance of acs2 and acs6 seem to be ethylene depended rather than ACC related, since the application of ACC in the wt led to decreased disease severity compared to control.


Sign in / Sign up

Export Citation Format

Share Document