Method for loading blast furnace with ore raw material and fuel

2002 ◽  
Vol 43 (1) ◽  
pp. 64
Keyword(s):  
2006 ◽  
Vol 103 (2) ◽  
pp. 76-81
Author(s):  
C. Perin Filho ◽  
D. Tassinari Miranda ◽  
E. Medeiros Milanez ◽  
E. Luiz Massanori Harano ◽  
E. Torres Bispo dos Santos ◽  
...  

Author(s):  
I. F. Iskakov ◽  
G. A. Kunitsyn ◽  
D. V. Lazarev ◽  
А. А. Red`kin ◽  
S. A. Trubitsyn ◽  
...  

To use effectively internal raw material base, JSC “Ural Steel” accomplished I category major overhaul of the blast furnace No. 2. The main purpose of the overhaul was to design a rational profile which could ensure an ability to operate with a charge containing 95 % of Mikhailovskii GOK (mining and concentrating plant) pellets having basicity of 0.5 by CaO/SiO2. The blast furnace No. 2 having useful volume of 1232 m3, was constructed by design of Danieli Corus, the Netherlands, and was blown in on December 30, 2020. In the process of guarantee tests, step-by-step increase of Mikhailovskii GOK pellets (Fetotal = 60.5 %, CaO/SiO2 = 0.5) content in the charge iron ore part was being accomplished from 55 to 95.1%. Charging of the blend containing pellets in the amount of 55% of iron ore part, was done by charging system 4OOCC + 1COOCC (Ore - Coke) with filling level 1.5 m. Under conditions of pellets part increase in the blend, the charging system was changed to decrease their content at the periphery, to increase it in the ore ridge zone and make it intermediate between periphery and the ore ridge. At the pellets share in the iron ore raw materials 0.75 the charging system was used as the following: 3OOCC + 1COOC + 1COOCC, while at the content 95.1% the following charging system was used: 2COOC + 2COOC + 1COOCC. It was noted that in the period of guarantee tests the furnace running was smooth. The average silicon content in the hot metal was 0.70% at the standard deviation 0.666. Sulfur content in the hot metal did not exceed 0.024%, the blowing and natural gas consumption figures were 2100 m3/min and 11000 m3/min correspondently, oxygen content in the blowing 26.5%, hot blowing and top smoke pressure figures were 226.5 and 109.8 KPa correspondently. The productivity of the furnace was reached as high as 2358 t/day at the specific coke rate 433 kg/t of hot metal. After guarantee tests completion, the pellets content in the iron ore part was decreased gradually from 95 down to 50%. The decreasing was made by 5% in every 6 hours of operation. Application of the mastered technology of the blast furnace No. 2 with the increased share of pellets will enable to stably supply the blast furnaces No. 1, 3 and 4 by iron ore raw materials in the proportion of 30-35% of pellets and 65-70% of sinter.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2131 ◽  
Author(s):  
G.U. Ryu ◽  
G.M. Kim ◽  
Hammad R. Khalid ◽  
H.K. Lee

Blast furnace slag, an industrial by-product, is emerging as a potential raw material to synthesize hydroxyapatite and zeolite. In this study, the effects of temperature on the hydrothermal synthesis of hydroxyapatite-zeolite from blast furnace slag were investigated. Specimens were synthesized at different temperatures (room temperature, 50, 90, 120, or 150 °C). The synthesized specimens were analyzed qualitatively and quantitatively via X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), BET/BJH, and scanning electron microscopy/energy dispersive using X-ray analysis (SEM/EDX). It was found that the hydroxyapatite phase was synthesized at all the reaction temperatures, while faujasite type zeolite appeared in the specimens synthesized at 90 and 120 °C. Moreover, faujasite was replaced by hydroxysodalite in the specimens synthesized at 150 °C. Additionally, the crystals of the hydroxyapatite tended to become larger and total crystallinity increased as the reaction temperature increased.


2013 ◽  
Vol 281 ◽  
pp. 490-495 ◽  
Author(s):  
Adji Kawigraha ◽  
Johny Wahyuadi Soedarsono ◽  
Sri Harjanto ◽  
Pramusanto

Blast furnace process is still an important process for producing pig iron. The process needs high grade iron ore and coke. The two materials can not be found easily. In addition blast furnace process needs cooking and sintering plant that produces polluted gases. Utilization of composite pellet for pig iron production can simplify process. The pellet is made of iron ore and coal. In addition the pellet can be made from other iron source and coal. This paper discusses the evolution of phase during reduction of composite pellet containing lateritic iron ore. Fresh iron ore and coal were ground to 140 mesh separately. They were mixed and pelletized. The quantity of coal added was varied from 0 %, 20 % and 29 % of pellet weight. Pellets were heated with 10 °C/minute to 1100 °C, 1200 °C, 1300 °C and 1350 °C in a tube furnace and temperature was held during 10 minutes. Heated pellets were analyzed with XRD equipment. XRD of reduced pellets showed that iron phase change with coal and temperature. Lack of coal during heating results the re-oxidation of iron phases. This process is due to replacement of reductive atmosphere by oxidative atmosphere.


2014 ◽  
Vol 937 ◽  
pp. 462-464 ◽  
Author(s):  
Wei You ◽  
Yan Mei Jiang ◽  
Qian Lin ◽  
Xiao Xia Yu ◽  
Peng Fei Li ◽  
...  

The blast furnace slag is an industrial solid waste in the production process, this paper deals with the blast furnace slag as products -- artificial jade cup handicraft lost wax casting process of high additional value of main raw material, firstly analyses the production process of chemical composition and artificial jade common blast furnace slag and natural jade, then the detailed design of the lost wax casting process of artificial jade cup, including manufacturing, shell mould manufacturing, dewaxing, baking, imitation jade material melting and casting. The lost wax casting method for producing artificial jade crafts complex products, the added value of products, so as to achieve a high added value utilization of blast furnace slag.


2019 ◽  
Vol 38 (2019) ◽  
pp. 726-732 ◽  
Author(s):  
Yi-ci Wang ◽  
Wen-bin Xin ◽  
Xiao-geng Huo ◽  
Guo-ping Luo ◽  
Fang Zhang

AbstractIn this study, the blast furnace slag of the Baotou Steel and Iron Company was used as the main raw material to prepare glass ceramics with diopside as the main crystal phase. The composition of the parent glass was designed by thermodynamic calculations with FactSage software. Small amounts of the nucleation agent Cr2O3 were then added to the parent glass to induce crystallization. Differential thermal analysis was used to determine the nucleation and crystallization temperatures of the glasses, and scanning electron microscopy and X-ray diffraction were adopted to determine the microstructures and phase compositions of the glasses after heat treatment, respectively. The results showed that glass ceramics of the diopside phase can be prepared with up to 73 wt% blast furnace slag when 1.44–1.91 wt% Cr2O3 is added, and the ceramics have uniform compact grains and a high bending strength of about 84.6–101.7 MPa. In addition, the mechanical properties are better than those of natural marble and granite. These results provide basic information and a scientific basis for industrial production of diopside glass ceramics using molten blast furnace slag as the main raw material.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1533 ◽  
Author(s):  
Koskela ◽  
Suopajärvi ◽  
Mattila ◽  
Uusitalo ◽  
Fabritius

Replacement of part of the coal in the coking blend with lignin would be an attractive solution to reduce greenhouse gas emissions from blast furnace (BF) iron making and for obtaining additional value for lignin utilization. In this research, both non-pyrolyzed and pyrolyzed lignin was used in a powdered form in a coking blend for replacing 5-, 10- and 15 m-% of coal in the raw material bulk. Graphite powder was used as a comparative replacement material for lignin with corresponding replacement ratios. Thermogravimetric analysis was performed for all the raw materials to obtaining valuable data about the raw material behavior in the coking process. In addition, chemical analysis was performed for dried lignin, pyrolyzed lignin and coal that were used in the experiments. Produced bio cokes were tested in a compression strength experiment, in reactivity tests in a simulating blast furnace shaft gas profile and temperature. Also, an image analysis of the porosity and pore shapes was performed with a custom made MatLab-based image analysis software. The tests revealed that the pyrolysis of lignin before the coking process has an increasing impact on the bio coke strength, while the reactivity of the bio-cokes did not significantly change. However, after certain level of lignin addition the effect of lignin pyrolysis before the coking lost its significance. According to results of this research, the structure of bio cokes changes significantly when replacement of coal with lignin in the raw material bulk is at a level of 10 m-% or more, causing less uniform structure thus leading to a less strong structure for bio cokes.


Sign in / Sign up

Export Citation Format

Share Document