06/00755 An adaptive thermal comfort model for the Tunisian context: a field study results

2006 ◽  
Vol 47 (2) ◽  
pp. 113
Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7427
Author(s):  
Hermawan Hermawan ◽  
Jozef Švajlenka

Passive thermal comfort has been widely used to test the thermal performance of a building. The science of active thermal comfort is important to be connected with the science of architecture. The currently developing active thermal comfort is adaptive thermal comfort. Vernacular houses are believed to be able to create thermal comfort for the inhabitants. The present study seeks to analyze the connection between the architectural elements of vernacular houses and adaptive thermal comfort. A mixed method was applied. A quantitative approach was used in the measurement of variables of climate, while a qualitative methodology was employed in an interview on thermal sensations. The connection between architectural elements and adaptive thermal comfort was analyzed by considering the correlation among architectural features, the analysis results of thermal comfort, and the Olgyay and psychrometric diagrams. At the beginning of the rainy season, residents of exposed stone houses had the highest comfortable percentage of 31%. In the middle of the rainy season, the highest percentage of comfort was obtained by residents of exposed brick and wooden houses on the beach at 39%. The lowest comfortable percentage experienced by residents of exposed stone houses at the beginning of the dry season was 0%. The beginning of the dry season in mountainous areas has air temperatures that are too low, making residents uncomfortable. The study results demonstrate that adaptive thermal comfort is related to using a room for adaptation to create thermal comfort for the inhabitants.


2020 ◽  
Vol 194 ◽  
pp. 05013
Author(s):  
Xiaowei Hong ◽  
Guangjin Zhang ◽  
Yufeng Zhang

Indoor thermal environment of Hui style traditional houses is depended on surrounding environments, building layouts and envelope. Quantitative analysis of the effects of building layouts and envelope on indoor thermal environment is of great significance for preventions of traditional houses and design of new archaized houses. A field investigation was conducted on thirty-six traditional houses from nine villages in Wuyuan, and the typical buildings’ layout and envelope were determined. Four traditional buildings in different location in Wuyuan were selected for continual recording. The four buildings with four types of building layouts and envelope were analyzed by using local adaptive thermal comfort model, and the effects of building layouts and envelope of traditional buildings were clearly revealed. The most crucial way to improve indoor thermal environment in Hui style traditional buildings was raising the indoor air temperature.


2019 ◽  
Vol 11 (2) ◽  
pp. 328 ◽  
Author(s):  
Aiman Albatayneh ◽  
Dariusz Alterman ◽  
Adrian Page ◽  
Behdad Moghtaderi

The building industry is regarded a major contributor to climate change as energy consumption from buildings accounts for 40% of the total energy. The types of thermal comfort models used to predict the heating and cooling loads are critical to save energy in operative buildings and reduce greenhouse gas emissions (GHG). In this research, the internal air temperatures were recorded for over one year under the free floating mode with no heating or cooling, then the number of hours required for heating or cooling were calculated based on fixed sets of operative temperatures (18 °C–24 °C) and the adaptive thermal comfort model to estimate the number of hours per year required for cooling and heating to sustain the occupants’ thermal comfort for four full-scale housing test modules at the campus of the University of Newcastle, Australia. The adaptive thermal comfort model significantly reduced the time necessary for mechanical cooling and heating by more than half when compared with the constant thermostat setting used by the air-conditioning systems installed on the site. It was found that the air-conditioning system with operational temperature setups using the adaptive thermal comfort model at 80% acceptability limits required almost half the operating energy when compared with fixed sets of operating temperatures. This can be achieved by applying a broader range of acceptable temperature limits and using techniques that require minimal energy to sustain the occupants’ thermal comfort.


Sign in / Sign up

Export Citation Format

Share Document