Similarities and differences in hydrous pyrolysis of biomass and source rocks

1999 ◽  
Vol 30 (12) ◽  
pp. 1495-1507 ◽  
Author(s):  
Tanja Barth
Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8317
Author(s):  
Qiang Cao ◽  
Jiaren Ye ◽  
Yongchao Lu ◽  
Yang Tian ◽  
Jinshui Liu ◽  
...  

Semi-open hydrous pyrolysis experiments on coal-measure source rocks in the Xihu Sag were conducted to investigate the carbon isotope evolution of kerogen, bitumen, generated expelled oil, and gases with increasing thermal maturity. Seven corresponding experiments were conducted at 335 °C, 360 °C, 400 °C, 455 °C, 480 °C, 525 °C, and 575 °C, while other experimental factors, such as the heating time and rate, lithostatic and hydrodynamic pressures, and columnar original samples were kept the same. The results show that the simulated temperatures were positive for the measured vitrinite reflectance (Ro), with a correlation coefficient (R2) of 0.9861. With increasing temperatures, lower maturity, maturity, higher maturity, and post-maturity stages occurred at simulated temperatures (Ts) of 335–360 °C, 360–400 °C, 400–480 °C, and 480–575 °C, respectively. The increasing gas hydrocarbons with increasing temperature reflected the higher gas potential. Moreover, the carbon isotopes of kerogen, bitumen, expelled oil, and gases were associated with increased temperatures; among gases, methane was the most sensitive to maturity. Ignoring the intermediate reaction process, the thermal evolution process can be summarized as kerogen0(original) + bitumen0(original)→kerogenr (residual kerogen) + expelled oil (generated) + bitumenn+r (generated + residual) + C2+(generated + residual) + CH4(generated). Among these, bitumen, expelled oil, and C2-5 acted as reactants and products, whereas kerogen and methane were the reactants and products, respectively. Furthermore, the order of the carbon isotopes during the thermal evolution process was identified as: δ13C1 < 13C2-5 < δ13Cexpelled oil < δ13Cbitumen < δ13Ckerogen. Thus, the reaction and production mechanisms of carbon isotopes can be obtained based on their changing degree and yields in kerogen, bitumen, expelled oil, and gases. Furthermore, combining the analysis of the geochemical characteristics of the Pinghu Formation coal–oil-type gas in actual strata with these pyrolysis experiments, it was identified that this area also had substantial development potential. Therefore, this study provides theoretical support and guidance for the formation mechanism and exploration of oil and gas based on changing carbon isotopes.


2002 ◽  
Vol 66 (15) ◽  
pp. 2755-2769 ◽  
Author(s):  
Robert F Dias ◽  
Katherine H Freeman ◽  
Michael D Lewan ◽  
Stephen G Franks

GeoArabia ◽  
2004 ◽  
Vol 9 (4) ◽  
pp. 41-72 ◽  
Author(s):  
Janet K. Pitman ◽  
Douglas Steinshouer ◽  
Michael D. Lewan

ABSTRACT A regional 3-D total petroleum-system model was developed to evaluate petroleum generation and migration histories in the Mesopotamian Basin and Zagros fold belt in Iraq. The modeling was undertaken in conjunction with Middle East petroleum assessment studies conducted by the USGS. Regional structure maps, isopach and facies maps, and thermal maturity data were used as input to the model. The oil-generation potential of Jurassic source-rocks, the principal known source of the petroleum in Jurassic, Cretaceous, and Tertiary reservoirs in these regions, was modeled using hydrous pyrolysis (Type II-S) kerogen kinetics. Results showed that oil generation in source rocks commenced in the Late Cretaceous in intrashelf basins, peak expulsion took place in the late Miocene and Pliocene when these depocenters had expanded along the Zagros foredeep trend, and generation ended in the Holocene when deposition in the foredeep ceased. The model indicates that, at present, the majority of Jurassic source rocks in Iraq have reached or exceeded peak oil generation and most rocks have completed oil generation and expulsion. Flow-path simulations demonstrate that virtually all oil and gas fields in the Mesopotamian Basin and Zagros fold belt overlie mature Jurassic source rocks (vertical migration dominated) and are situated on, or close to, modeled migration pathways. Fields closest to modeled pathways associated with source rocks in local intrashelf basins were charged earliest from Late Cretaceous through the middle Miocene, and other fields filled later when compression-related traps were being formed. Model results confirm petroleum migration along major, northwest-trending folds and faults, and oil migration loss at the surface.


1987 ◽  
Vol 27 (1) ◽  
pp. 98 ◽  
Author(s):  
J.W. Smith ◽  
T.D. Gilbert

Primary Australian terrestrially-derived crudes are characterised by high wax and n-alkane contents. These characteristics, as determined by hydrogenation and hydrous pyrolysis, appear to be unrelated to either the chemical or petrographic compositions of Victorian brown coal lithotypes. Furthermore, since relationships between chemical and petrographic composition are obscure, a re-examination of current concepts which relate these established source rock parameters to liquid hydrocarbon generating potentials is warranted.The content of thermally stable, longer-chain, n-alkyl components in source rocks is introduced as the critical factor in determining whether these rocks have the potential to generate typical Australian waxy crudes or hydrocarbon gases. Modifications to this general concept are required by the thermal stability of directly substituted longer-chain n-alkyl aromatics and hydroaromatics. These appear to be sources of light hydrocarbons and gases, rather than oils.Inherent weaknesses in the experimental techniques of hydrogenation and hydrous pyrolysis have hindered the collection of data, but the concept that n-alkane potential is a critical factor in determining the petroleum-generating potential of immature source rocks is being pursued using techniques modified for the determination of their total heteroatom-bonded n-alkyl contents.


Sign in / Sign up

Export Citation Format

Share Document